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1 Introduction

Diffusion modeling has recently emerged as a powerful paradigm for generative models, where genera-
tion is implemented through iterative denoising. A central question in diffusion modeling is the exact
mechanism of operation. In this project, we focus on the work of Kadkhodaie et al. [4], which addresses
the implicit representations of UNet denoisers, the memorization phenomenon in generative models, and
the optimality of denoising representations. We begin by reviewing related results in classical denoising
(Section 4), present the work of Kadkhodaie et al. [4] (Section 3), and conclude with experiments on
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recent single-step formulations of image generation (Section 4).

Denoising in the imaging context aims to recover an image x ∈ Rd that is corrupted by additive noise. In
many settings, the corruption is modelled by z ∼ N (0; ff2I) with density gff(z) = 1√

2ıff
n=2 exp(−zT z=2ff2).

If the data x has probability density pD, the density of noisy images y can be expressed by the convolution

pff(y) =

ˆ
Rd
pff(y | x)pD(x) dx =

ˆ
Rd
gff(y − x)pD(x) dx

The corrupted density pff can be used to sample from pD through score-based sampling [9]. For
y0 = z ∼ N (0; ff2I), steps of Langevin Monte-Carlo style sampling are implemented with the score
(1 ≤ t ≤ T ).

yt+1 = yt +
ff2

2
∇ logy pff(yt) + zi

as T → ∞ and ff → 0, it can be shown that yT ∼ pD under some regularity assumptions [9]. In
practice, the score is approximated by a neural network ∇ logy pff(y) ≈ s„(y), and the above sampling
is accelerated by repeating the above sampling for L noise levels ff1 < ff2 < · · · < ffL. These methods
have shown remarkable generatlization abilities for generating images, and several interesting empirical
questions arise in this setting.

1. The score s„(x) ≈ ∇ logy pff(y) and the conditional expectation of the clean image E [x | y ] have
an exact relationship (Section 3). The score is typically learned via a U-Net (Section 2.5) neural
network, which captures multi-scale image representations by design. The representations learned
by the UNet provide insight into the structure of the train dataset that is represented within the
a denoising process.

2. pD ∼ {xi}Ni=1 are discrete points which are uniformly sampled during training, therefore

pff(y) =
1

n

nX
i=1

gff(y − xi )

can be viewed as a uniform mixture of Gaussians. If the number of points is small, it is clear
that score-based sampling leads to memorization of the training data. However, empirically, score-
based models are able to generalize with extremely high accuracy as the number of data points N
becomes large.

These relationships motivate the understanding of generalization in score-based models through the
structure present in trained denoisers. In this project, we review classical ideas from denoising, optimality
and their relationship to generalization in score-based generative models, as presented by Kadkhodaie
et al. [4].

2 Denoising

2.1 The structure of natural images
To motivate the discussion of possible representations that underly the diffusion model, we consider the
structure present in images [14]. Low dimensional image decompositions enable denoisers to achieve
optimality (Section 2.2) and this structure coincides with natural image data.
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1. Power law decay. [13, 14] The amplitude (f ) spectra (cf. Section 2.2) of natural images show
a decay rate of ∼ f −¸, where typically ¸ ≈ 2.

2. Low-dimensional manifolds. [1] Projections of a Lambertian surface (eg. a face with different
lighting) form low-dimensional subspaces in pixel space, allowing for the adoption of a sparse basis
that captures the underlying data structure.

3. Average spectrum. [14] The average frequency spectrum of various scenes has a distinctly
identifiable structure. In 2003, Torralba and Oliva [14] proposed a way to exploit this structure to
build spectrum-based filters for scene classification.

This structure motivates the discussion of the optimal PSNR slope under assumptions on the power
spectrum (Sections 2.2, 2.3), the generalization and interpolation of sampling (Sections 1, 3), and the
representations present in the UNet featuring data-dependent convolutional layers (Section 2.5).

2.2 Linear denoisers
The simplest denoisers, namely f , are linear on the corrupted images f (–y1 + y2) = –f (y1) + f (y2).
This setting ensures that the basis ( k)k that f operates in must optimally coincide with features of the
dataset. In this section, we further discuss certain properties of a linear denoiser in an orthogonal basis.

Oracle denoiser

Suppose that the ground truth x is known and that y = x + z is corrupted by Gaussian white noise.
Consider the linear denoiser f , which is represented as a sum of projections onto some orthonormal basis
( k)k .

f (y) =
X
k

–k⟨y;  k⟩ k

We denote x̂ = f (y) as the denoised image. Assuming access to the ground truth x , we identify the
optimal scaling –k(x) such that f minimizes the mean square error (MSE) between x and x̂ .

Ez ∥x̂ − x∥2 =
X
k

Ez |⟨x̂ − x;  k⟩|2 =
X
k

Ez |–k(⟨x;  k⟩+ ⟨z;  k⟩)− ⟨x;  k⟩|2

Since Ez⟨z;  k⟩ = 0 by linearity of expectation, we expand the above by

=
X
k

⟨x;  k⟩2 (–k − 1)2 + –2kff
2

The first order conditions for each quadratic term give

(–k − 1)⟨x;  k⟩2 + –kff
2 = 0 =⇒ –k(x) =

⟨x;  k⟩2
⟨x;  k⟩2 + ff2

The above optimal –k(x) assumed knowledge of the ground truth x .
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Wiener filter

The Wiener filter accounts for x following some distribution x ∼ X by accounting for its expectation
in the MSE. For ¸k = E |⟨X; k⟩|2, an identical calculation shows

EX;z ∥f (X + z)− X∥2 =
X
k

EX |⟨X; k⟩|2 (–k − 1)2 + –2kff
2

=
X
k

¸k (–k − 1)2 + –2kff
2

Minimizing for the optimal –k as before, we find that

–k =
¸k

¸k + ff2
; ¸k = E |⟨X; k⟩|2

The ¸k are typically called the power spectrum of the underlying data distribution x ∼ X. Under
certain empirical assumptions, for example ¸k decaying with a power law, it is possible to further derive
some optimality results of the error with respect to  k .

Analysis of decay rate

We consider the –k(x) = ⟨x; k⟩2
⟨x; k⟩2+ff2 from Section 2.2. –k(x) acts as a type of soft threshold for  k ,

where projection gradually occurs as signal dominates the noise. To observe this, we find that the MSE
of each term is of the order of min(|⟨x;  k⟩|2 ; ff2k).

Ez ∥x̂ − x∥2 =
X
k

ff2 |⟨x;  k⟩|2

|⟨x;  k⟩|2 + ff2
∼
X
k

min(|⟨x;  k⟩|2 ; ff2k)

The calculation follows due to the inequality 1
2 min(a; b) ≤ ab=(a + b) ≤ min(a; b), which gives the

order of decay of the coefficients. We may arrange basis elements by |⟨x;  k⟩|2 > ff2:

∼
X

|⟨x; k⟩|2>ff2

ff2

| {z }
M terms

+
X

|⟨x; k⟩|2<ff2

|⟨x;  k⟩|2

Above,  1; : : : ;  K represent terms with signal dominating the noise ⟨x;  k⟩2 < ff2. This motivates
denoising by using the truncated M-term representation xM =

P
k≤M⟨x;  k⟩ k , giving ∥x − xM∥2 =P

|⟨x; k⟩|2<ff2 |⟨x;  k⟩|2. The MSE is then of the order of

Ez ∥x̂ − x∥2 ∼ Mff2 + ∥x − xM∥2 ∼ ff2¸=(¸+1)

In order for ( k)k to minimize the MSE, it is advantageous for x to have an accurate sparse representation
in ( k)k . A typical empirical assumption is that ⟨x;  k⟩2 ∼ k−(¸+1) which is true for natural images
(Section 2.1). We next consider a general result about the decay of the MSE when ⟨x;  k⟩2 ∼ k−(¸+1)

for some basis ( k)k .
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Theorem 1. If f is a linear denoiser represented in the basis ( k)k and there exist c; c ′ independent
of x; k such that c k−(¸+1) ≤ ⟨x;  k⟩2 ≤ c ′ k−(¸+1), (denoted ⟨x;  k⟩2 ∼ k−(¸+1)) then

E ∥x − x̂∥2 ∼ ff2¸=(¸+1)

Note: The optimal PSNR slope is ¸
¸+1 . That is, the lower bound of the decay rate of E ∥x − x̂∥2

with respect to ff2 is of order ¸
¸+1 .

Proof. We begin by labelling the  k such that ⟨x;  i ⟩2 ≥ · · · ≥ ⟨x;  i+1⟩2. Note that the ordering
depends on x . Let M be the largest index with ⟨x;  k⟩2 > ff2.

⟨x;  M⟩2 > ff2 ≥ ⟨x;  M+1⟩2;

so that

c ′M−(¸+1) > ff2 ≥ c (M + 1)−(¸+1):

We then have M−(¸+1) ∼ ff2, i.e., M ∼ ff−2=(¸+1), and thus Mff2 ∼ ff2¸=(¸+1). We also have

X
k>M

⟨x;  k⟩2 ≤ c ′
X
k>M

k−(¸+1) ≤ c ′
ˆ +∞

M

t−(¸+1) dt =
c ′

¸
M−¸;

X
k>M

⟨x;  k⟩2 ≥ c
X
k>M

k−(¸+1) ≥ c
ˆ +∞

M+1

t−(¸+1) dt =
c

¸
(M + 1)−¸;

so that ∥x − xM∥2 ∼ M−¸ ∼ ff2¸=(¸+1). Previously, we showed that the terms in the expansion of the
MSE are of the same order min(|⟨x;  k⟩|2 ; ff2k), and it follows that E ∥x − x̂∥2 ∼ ff2¸=(¸+1).

2.3 Optimal C¸ bases

A particular class of images that admit a basis ( k)k ∼ k−(¸+1) are the C¸ images. Heuristically, this
class of images is highly regular except possibly at the edges, which are regular as curves. The optimal
bases for representing such images are known [7]. In Section 3 we discuss the optimality of U-Net
denoisers trained on C¸ images, demonstrating the robustness of the representations learned by these
models. We begin by surveying the optimality of C¸ images in the bandlet basis.

Definition 1. A function f is uniformly ¸-Lipschitz over a domain Ω if there exists a constant
C such that for all x ∈ Ω, there exists a polynomial qx of degree ⌊¸⌋ such that for all y ∈ Ω,
|f (y)− qx(y)| ≤ C|x − y |¸.

Definition 2. The image x : [0; 1]2 → R is C¸-geometrically-regular if it is uniformly ¸-Lipschitz
over [0; 1]2 \ ∪i‚i where the {‚i}di=1 are ¸-Lipschitz curves in [0; 1]2.

Peyré and Mallat [7] show that an optimal approximation of a C¸ image x , can be constructed by a
wavelet basis adapted to the geometry of the image. A wavelet basis is taken with respect to the image,
which gives a transform with many coefficients that can be threshholded. To accelerate computation,
a segmentation is applied to capture particular geometric features, and a localized bandelet basis is
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Figure 1: (from Peyré and Mallat [7]) (a) wavelet transform of the C¸ image (b) segmentation of image
into dyadic geometry-adapted regions on which the bandelet basis is supported.

introduced on each new subdivision. The bandelet basis is parametrizable, allowing each step to be
computable in practice.

Proposition 1 (Peyré and Mallat [7], Lemma 6.2.). Let f be a C¸-geometrically-regular image. There
exists C such that for all T > 0 there exists a bandelet basis B(Γ) in which the truncated approximation
xM satisfies

∥x − xM∥2L2 ≤ CT
2¸
¸+1 and M ≤ CT− 2

¸+1 :

Remarkably, the image features that are implicitly represented in UNet denoisers show similar optimality
(cf. Section 3).

2.4 Score-based denoising
We relate the ideas of denoising to the score, which will be key elements of the observations of Section
3. We show that in denoising, the MSE optimal denoiser is E [x | y ] (Proposition 2). Additionally,
when z ∼ N(0; ff2I) is Gaussian, there is an exact relationship between the score and the conditional
expectation (Proposition 3).

Proposition 2 (Optimal Denoiser). The conditional expectation minimizes the mean-square error
among all f ∈ 2(Rn):

E [x | y ] = arg min
f ∈L2(Rn)

∥x − g(y)∥2

Proof. By adding and subtracting E [x | y ] and using its properties, we may establish

Ex
ˆ
(x − f (y))2

˜
= Ex [(x − E [x | y ])]2 + E [(E [x | y ]− f (y))]2

Note that the left hand term is a constant and that the right hand term is minimized exactly when
E [x | y ] = f (y).
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Proposition 3 (Miyasawa relationships, 1962). a For y = x+ z where z ∼ N(0; ff2I) and x ∼ pD(x),
the score and conditional covariance can be prepresented by

f ?(y) = E [x | y ] = y + ff2∇ log p(y)

Df ?(y) = Cov [x | y ] = ff2(I + ff2∇2 log p(y))

aThese relationships have been established for a long time!

Proof. We begin by recalling that the noisy density is given by

p(y) =

ˆ
p(x) p(y | x) dx

For any function h, the logarithmic derivative yields ∇ log h(y) = 1
h(y)∇h(y). Applying this above twice,

∇ log p(y) =
1

p(y)

ˆ
p(x)∇yp(y | x) dx

=
1

p(y)

ˆ
p(x)∇yp(y | x) dx

=
1

p(y)

ˆ
p(x) p(y | x)∇y log p(y | x) dx

=

ˆ
p(x | y)∇y log p(y | x) dx

= E [∇y log p(y | x) | y ]

which can be interpreted as a chain rule on scores. To compute the second derivative, we find

∇2 log p(y) =

ˆ
p(x | y)

`
∇y log p(x | y)∇y log p(y | x)T +∇2

y log p(y | x)
´
dx

By logarithmically differentiating Bayes rule,

∇y log p(x | y) = ∇y log p(y | x)−∇y log p(y)

Applying this to the earlier equality, we find

∇2 log p(y) =

ˆ
p(x | y)

`
(∇y log p(y | x)−∇y log p(y))∇y log p(y | x)T +∇2

y log p(y | x)
´
dx

= Cov[∇y log p(y | x) | y ] + E [∇2p(x | y) | y ]

Recall that y is obtained from x by adding noise of variance ff2. Therefore

log p(y | x) = − 1

2ff2
∥y − x∥2 + C

∇y log p(y | x) = −
1

ff2
(y − x)

∇2
y log p(y | x) = −

1

ff2
I
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From the previous equations, we conclude

∇ log p(y) = E [∇y log p(y | x) | y ]

=
1

ff2
(E [x | y ]− y)

∇2 log p(y) = Cov [∇y log p(y | x) | y ] + E [∇2p(x | y) | y ]

=
1

ff4
Cov[x | y ]− 1

ff2
I

We therefore find

E [x | y ] = y + ff2∇ log p(y)

Cov[x | y ] = ff2(I + ff2∇2 log p(y))

which gives the desired equalities.

Consequences

There are several natural consequences that follow from the above lemmas.

1. A denoiser f trained to minimize the mean square error E ∥x − f (y)∥2 optimally achieves f (y) =
E [x | y ]. In the setting of Proposition 3, we can re-express the denoiser as

f (y) = y + ff2∇ log p(y) =⇒ ∇ log p(y) =
1

ff2
(f (y)− y) (1)

2. Differentiating f (y) above, we find

Df (y) = I + ff2∇2 log p(y) =⇒ Df (y) ∝ Cov[x | y ]

The optimal Jacobian therefore captures the conditional covariance structure of the data given
y . We therefore expect the eigendecomposition of Df (y) to represent some local data-dependent
structure (cf. Section 2.2).

The following examples explicitly demonstrate the Miyasawa relationships.

Example 1. If the training set consists of {x}, then p(y) ∼ N(x; ff2I), and it is easy to see that

x = y + ff2∇ log p(y)

A denoiser would simply memorize x . Sampling from the denoiser residual of Equation 1 would
correspond to the memorization phenomenon in diffusion models.
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Example 2. For training examples {xi}ni=1 the uniform sampling measure of the train data can be
written as pD(x) = 1

n

P
‹xi . In this case,

log p(y) = log

 
1

n

nX
i=1

gff(y − xi )
!

∇ log p(y) = − 1

ff2
Pn

i=1 gff(y − xi )
·
nX
i=1

(y − xi )

We see that this corresponds to a weighted sum in the direction of the nearest data points. Areas of
low probability generating a high score due to (

Pn
i=1 gff(y − xi ))−1 and ∥∇ log p(y)∥ scales with ff−2.

The above implies that as the number of datapoints increases, and as the score varies, a trained denoiser
must learn to interpolate nearby data points in a data-dependent way. A natural question is about the
bounds that control the approximation error of a learned denoiser f„. The next result shows that the
error in estimating the true density p(x) is controlled by minimizing the denoising error for all noise
levels ff2.

Proposition 4. Let f„(x) be a learned denoiser and s„(x) = 1
ff2 (y − f„(x)). For underlying data

density p(x), noisy density pff(y), and learned density p„(x), DKL(p(x)∥p„(x)) is controlled by the
MSE of denoiser f„ at all noise levels

DKL(p(x)∥p„(x)) ≤
ˆ ∞

0

`
MSE(f„; ff2)−MSE(f ∗; ff2)

´
ff−3 dff;

where f ? = E [x | y ] is the optimal denoiser. In particular, DKL is minimized when f„ = f ?.

Proof. From the results of Song et al. [11], the KL divergence is controlled by the score-matching
objective by the inequality

DKL(p(x)∥p„(x)) ≤
ˆ ∞

0

Ey
ˆ
∥∇ log pff(y)− s„(y)∥2

˜
ff dff

By inserting the results of Propositions 2 3, we find that

∥∇ log pff(y)− s„(y)∥2 =
1

ff4
E
ˆ
∥E[x |y ]− f„(y)∥2

˜
= E

ˆ
∥x − f„(y)∥2

˜
= E

ˆ
∥x − E[x |y ]∥2

˜
+ E

ˆ
∥E[x |y ]− f„(y)∥2

˜
We therefore have

E
ˆ
∥∇ log pff(y)− s„(y)∥2

˜
=

1

ff4
`
E
ˆ
∥x − f„(y)∥2

˜
− E

ˆ
∥x − E[x |y ]∥2

˜´
=

1

ff4
`
MSE(f„; ff2)−MSE(f ∗; ff2)

´
:

Combining with the bound given by the score-matching objective, this proves the proposition.
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Proposition 5 (Stein’s unbiased risk estimate). The MSE of a denoiser f may be written by the
statistical estimator

E
ˆ
∥x − f (y)∥2

˜
= E

ˆ
∥y − f (y)∥2

˜
+ 2ff2E[tr ∇f (y)]− ff2d

Proof. The MSE may be written as

E
ˆ
∥x − f (y)∥2

˜
= E

ˆ
∥(y − f (y))− (y − x)∥2

˜
= E

ˆ
∥y − f (y)∥2

˜
− 2E[(y − x; y − f (y))] + E

ˆ
∥y − x∥2

˜
The last term is the total variance of the noise and equals ff2d . The middle term can be rewritten with
an integration by parts since y − x = −ff2∇y log p(y |x).

E[(y − x; y − f (y))] = −ff2
¨
⟨∇y log p(y |x); y − f (y)⟩p(x)p(y |x) dx dy;

= −ff2
¨
⟨∇yp(y |x); y − f (y)⟩p(x) dx dy;

= ff2
¨

tr(Id−∇f (y))p(x)p(y |x) dx dy

= ff2E[d − tr ∇f (y)]

Inserting into the original equation, we arrive at the desired equality, which proves the proposition.

2.5 UNet Architecture
The U-Net is a widely adopted convolutional architecture for segmentation, denoising, and generation
tasks [2, 8, 10]. The model performs both downscaling and upscaling operations, which form a U-like
shape, displayed in Figure 2.
There are several notable facts about the UNet.

1. If each convolutional layer does not include any biases (conv(x) = Wx + b with b = 0), then the
UNet is a composition of linear and piecewise linear operations. That is x̂ = f„(y) can be written
as

x̂ = W (y)y

where W (y) ∈ Rd×d is a y -dependent matrix that implements the denoising step.

2. The down-sampled representations are also copied to the representations at each up-sampling step,
suggesting that the layers learn scale-dependent features of the underlying data. This coincides
with the construction of the C¸ optimal of bandelet basis, which use scale-dependent wavelets
adapted to the geometry of the particular image (Section 2.3).

These observation and results of Section 2.4 motivate considering the linearization of a score-based
generative model that is implemented as a UNet.
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Figure 2: (from Ronneberger, Fischer, and Brox [8].) The UNet architecture. In the downsampling
stage, a series of 3 × 3 convolutions with ReLU nonlinearities and 2 × 2 max-pooling to generate the
next scale. During the up-sampling stage, 2×2 max-pooling and up-convolutions are used in addition to
the concatenation of features features from the earlier down-sampling stage. In this example, a smaller
output resolution is generated. The same output resolution can be achieved by setting the same filter
size during downsampling and upsampling.

3 Kadkhodaie et al. [4], Generalization in diffusion models
arises from geometry-adaptive harmonic representations.

Generalization in diffusion models arises from geometry-adaptive harmonic representations by Kadkho-
daie et al. [4] is a recent empirical work that unites the ideas of Section 2 to analyze the representations
that are learned by a UNet denoiser. For a trained UNet denoiser f„, the authors demonstrate that (1)
the eigenvectors of Df„(y) acquire a learned data-dependent structure, (2) sampling from the denoiser
residual f„ transitions from memorizing training examples to interpolation, and (3) the learned basis
vectors achieve optimal PSNR decay (cf. Section 2.2)

3.1 Overview
A piece-wise linear UNet denoiser f„ is trained to minimize MSE of train samples {xi}ni=1. Corrupted
samples y = x + ffz; z ∼ N(0; I) are generated over various noise levels ff2 (in light of Proposition 4)
and trained to recover the clean image. The learned parameters „ minimize

„̂ = argmin
„

Ex∼pD ; z; ff [∥f„(x + ffz)− x∥2] (2)
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In Section 2.4, we showed Df„(y) ≈ Cov[x | y ]. By piecewise linearity, we may compute the eigende-
composition of Df„ at the particular y , namely {ek(y)}nk=1 with eigenvalues {–k(y)}dk=1. In particular,

Df„(y) =
dX
k=1

–k(y)⟨y; ek(y)⟩ ek(y)

The approximated score may be represented by s„(y) = 1
ff2 (f„(y) − y) and sampling with the UNet

denoiser expoits this fact in this way. The Stein unbiased risk estimate (Proposition 5) yields that

MSE(f„; ff2) = Ey

2642ff2 tr Df„(y)| {z }
rank penalty

+ ∥y − f„(y)∥2| {z }
distance penalty

−ff2d

375
The SURE suggests that to minimize the MSE, tr Df„(y) must be minimized, and therefore the basis
{ek(y)} must sparsely capture the structure of the underlying image. This further motivates the question
of memorization and generalization. For few examples, memorization may lead to a favourable MSE.
However, with many datapoints, some learned interpolation of training images is necessary to achieve
the optimum in the above estimator. This is in addition to the observations of Section 2.2, which suggest
optimality of sparse data representations in the simple setting of oracle denoisers.

3.2 Contributions
The authors present several striking results demonstrating the transition from memorization to general-
ization in diffusion models.

1. Data-dependent basis. The eigenvectors of Df„(y), {ek(y)}dk=1 are adapted to the features
of the clean image. In UNets that are trained on sufficient training data, ek(y) interpolate the
training data while the clean image is sparsely represented in this basis (Figures 5).

This behaviour fits with the discussion of linear denoisers (Section 2.2). We heuristically demon-
strated that the image data must be sparse in the optimal basis.

2. Memorization to generalization. For f„ trained with increasing amounts of training data, the
PSNR curves demonstrate a clear transition; with a small training dataset the PSNR is constant
on test data, while it is highly accurate on training data. As the amount of train data increases,
the test and train PSNR become essentially identical, suggesting that the denoiser begins to
interpolate the training data (Figure 3).

This interpolation of training data is rather strikingly demonstrated by distinct samplers converging
to the same samples despite being trained on non-overlapping subsets of the training data (Figure
4). The authors partitions a training set S = S1⊔S2 and fit distinct denoisers for sizes |S1| = |S2| =
N ∈ {1; 10; : : : ; 105}. For small N, both models effectively memorize the training datapoints. As
N becomes large, the same noise initialization for distinct f 1„ ; f

2
„ produce almost identical samples.

As the generated samples from both models become similar, their similarity begins to deviate from
their training set (bottom row of Figure 4).

This corresponds to the discussion of 2.4, where we observe that the fitted score must learn some
interpolation of the training data values. As the number of training data point grows, the score of
the aforementioned mixture of Gaussians transitions to give an accurate represtation of the data.
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3. C¸ optimality. For synethetic C¸ image datasets, and denoisers trained at fixed ff2, the learned
bases of the denoiser are almost exactly optimal. This is demonstrated by achieved the theoretical
lower bound in the PSNR decay (Figure 6), which was derived in Section 2. Similarly to the optimal
C¸ basis constructel by Peyré and Mallat [7], the optimal C¸ basis represented in the diffusion
model is adapted to the edge contours. Remarkably, these features are implicitly represented in a
UNet, without careful construction of a basis for the problem.

Figure 3: (from Kadkhodaie et al. [4]) Transition from memorization to generalization for a UNet
denoiser trained on face images. Each curve shows the denoising error (output PSNR, ten times log10
ratio of squared dynamic range to MSE) as a function of noise level (input PSNR), for a training set of
sizes N ∈ {1; : : : ; 105}. The increase in test performance on small noise levels at N = 1000 is indicative
of the transition phase from memorization to generalization. At N = 105, test and train PSNR are
essentially identical, and the model has moved to the interpolation regime.

3.3 Experimental details

Training

A standard UNet, of the type described in Section 2.5 in the majority of the experiments. Training of
f„ occurs by minimizing the MSE objective (Equation 2) where ff2 ∼ U[0; 1] are uniformly drawn from
[0; 1] to match image pixel intensities. Figures presented in this project feature models trained on on
synthetic and CelebA datasets [5].

Sampling

Sampling from denoisers follows the algorithm of Kadkhodaie and Simoncelli [3], and is described below.
For initial noise levels (ff0; ff∞), this method uses two additional hyperparameters h ∈ [0; 1] and ˛ ∈
(0; 1], which control the step size and injected noise respectively (to accelerate the Langevin style
sampling presented in Section 1). The authors set h = 0:01, ˛ = 0:1, ff0 = 1, and ff∞ = 0:05.
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Figure 4: (from Kadkhodaie et al. [4]) Denoisers are trained on non-overlapping subsets S1 and S2 of a
face dataset of size N ∈ {1; : : : ; 105}. After training, samples are compared in their similarity with the
training data, visual (top row) and with cosine similarity across the training data (bottom row). The
networks memorize for small N, and a distinct transition at N ≈ 1000 where the generated samples are
roughly interpolated. For large N = 105, the models generate almost identical samples from the same
noise intialization. The cosine similarities betwen samples generated by the models becoms greater than
with their respective training data.

Figure 5: (from Kadkhodaie et al. [4]) Eigenvectors {ek(y)} of Df„(y) of a denoiser trained on 105

face images, evaluated on a noisy test image. On the left, the decay of the eigenvalues –k(y) is rapid,
and and corresponding coefficients ⟨x; ek(y)⟩ suggest that the clean image is sparse in {ek(y)}. The
adaptive basis vectors contain oscillating patterns, adapted to lie along the contours and within smooth
regions of the image, whose frequency increases as –k(y) decreases.
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Figure 6: (from Kadkhodaie et al. [4]) UNet denoisers trained on 105 C¸ images achieve near-optimal
PSNR slope decay. For varying ¸ ∈ {1; 2; 3; 5}, the slopes follow the theoretical lower bound ¸

¸+1 . On
the right, the original C¸ image with (¸ = 4) and the top eigenvectors of Df„(y). The vectors capture
the contour of the images, and harmonic structure along the regular region, with oscillating patterns
increasing for lower –k(y).

Figure 7: (from Kadkhodaie et al. [4]) Learned bases {ek(yi )} basis shown for three test images y1; : : : ; y3
that are C¸ geometrically regular. The regularity of the contours decreases from left to right, while the
regularity of the background is fixed. The model adapts to edge and interior features of the data. As
–k(y) increases, the more regular contours show increased oscillating patterns. For the irregular (left)
contours, different oscillatiing patterns are obesrved in the background (top row).

4 Consistency Models

Diffusion and score-based generative models use an iterative approach to generate data through a
sampling process. In practice, the iterative approach often requires many steps at several noise levels for
convergence (Section 1), also reflected in Algorithm 1 [3]. Song et al. [10] suggest using a single-step
denoiser, which is trained to solve the ODE satisfied by the optimal score.
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Algorithm 1 Sampling via ascent of the log-likelihood gradient from a denoiser residual

Require: denoiser f , step size h, stochasticity from injected noise ˛, initial noise level ff0, final noise
level ff∞, distribution mean m

1: t = 0
2: Draw x0 ∼ N (m;ff20Id)
3: while fft ≥ ff∞ do
4: t ← t + 1
5: st ← f (xt−1)− xt−1 . Compute the score from the denoiser residual
6: ff2t ← ∥st∥2=d . Compute the current noise level for stopping criterion
7: ‚2t =

`
(1− ˛h)2 − (1− h)2

´
ff2t

8: Draw zt ∼ N (0; I)
9: xt ← xt−1 + hst + ‚tzt . Perform a partial denoiser step and add noise

10: end while
11: return xt

4.1 Background
In the forward process, diffusion models slowly add noise to the initial data density p0(x), in which
samples (xt)0≤t≤T evolve by

dxt = —(xt ; t) + ff(t)dwt

where wt is standard Brownian motion, ff(t) is a time dependent noise level, and —(xt ; t) represents the
drift of these trajectories. Remarkably, the trajectories at time t are distributed according to xt ∼ pt(x)
and satisfy the probability flow ODE [12]

dxt = (—(xt ; t)−
1

2
ff(t)2∇ log pt(xt)) dt

Setting —(xt ; t), ff(t) =
√
2t, and training a network to learn the score function s„(xt) ≈ ∇ log pt(xt),

the above can empirically be set rearranged to the ODE

dxt
dt

= −ts„(xt)

Sampling a particular xT ∼ N(0; ff2I) and solving in backwards time therefore generates a sample x0.
In theory, for various time points the same trajectory xt ; xt′ , the solver theoretically arrives at similar
values x0 independent of xt ; xt′ . To encapsulate this process, we denote

x0 = f„(xt ; t)

where f„ is the probability flow ODE solver. The above may be interpreted as a type of non-linear
denoiser with additional time conditioning. In practice, f„ is implemented by a UNet, matching Section
2.5 and the methods of Section 3. In the above, the conditioning value of t depends nonlinearly on the
noise level ff, which we will denote t(ff) in the following sections.

4.2 Experiments
We perform several small experiments to test the similarity to the results of Kadkhodaie et al. [4]. The
models differ significantly in the method of training, and consistency models feature full non-linearities
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throughout the model depth. Consistency models additionally condition on noise level, which is a
significant difference from the previous results.

SVD of Denoiser Jacobian

We test whether similar data-dependent representations occur in the singular vectors of the Jacobian
Dx f„(xt ; t(ff)) for a consistency model f„.

(a) (b)

Figure 8: For ff = 1 the Jacobian L = Df„(y; t(ff)) for noisy image y is decomposed into its SVD
J = UffV T . (a) The first 100 singular vectors, ie. columns of U the singular vectors show similar
oscillating structure in the later singular vectors, following the observations of Section 3. (b) The
singular values (the diagonal of Σ). The singular vectors show a sharp decay rate in the dimension,
demonstrating low-dimensional structure in the representations of the denoiser, in analogy with Section
3.

Basis Conditioning

The consistency models are single-step denoisers and we may view them as directly mapping noise
z ∼ N(0; ff2I) to the image manifold x = f (z; t(ff)). A natural question is whether a fixed noise
realization y∗ = x + z∗ may be perturbed by some basis vector ffi such that

f„(x + z∗ + ffi; t(ff))

provides a slightly altered image. We consider the sinusoidal perturbation

ffin;m = sin

„
2ın

d
x

«
sin

„
2ın

d
y

«
We apply f the input renormalized to the original pixel intensity (Figure 9).

y∗ =
∥z∗∥

∥z + ffin;m∥
(z + ffin;m)
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(a) (b)

(c) (d)

Figure 9: We fix z∗ ∼ N(0; ff2I) where ff2 = 28 (it is later renormalized by f„.) (a) For 1 ≤ n;m ≤ 5
we construct y∗ with ffin;m as we previously described. This perturbation results in slight changes in the
output. In the above, ffi4;3 perturbs sufficiently perturbs the input to create a realistic yet significantly
altered output. (b) An example of a linear combination of perturbations, ffi = 0:7ffi4;3 + 0:3ffi6;6 which
is designed perturb the input towards the desired output of (c). (c) The output when perturbing z∗ by
the new ffi. (d) The output when performing no perturbations, ie. f (z∗; t(ff)).

We find that by slightly modifying the structure of the noise, we are able to modify the output of
f„. This suggests that f„ interpolates between images in a steerable way; the geometry of the noise
structure determines the exact features present in the output images. This motivates questions about
which exact features of the noise influence generation in single-step consistency models, the underlying
data-dependent representations of f„, and their relationship to generalization.
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5 Conclusion

In this report, we investigated the relationship between classical ideas in denoising and the properties
of modern score-based models, as presented by Kadkhodaie and Simoncelli [3]. The work surveys how
UNet architectures learn geometry-adaptive representations, and how these structures coincide with the
features present in natural images. The main focus on the work is the transition from memorization to
generalization in sampling, which is a central empirical question in score-based generative models. In
an appropriate sense, the representations of these samplers are PSNR optimal, which is a remarkable
fact. Motivated by these ideas, we test similar insights in consistency models, showing that feature
adaptivity and low rank structure also emerge. We experiment with noise perturbations and reveal that
these models learn steerable interpolations between images. This opens further questions, in particular
an exact formulation of the features that UNets attend to, and how they impact the output. These
ideas are important for interpretable diffusion and for precise mathematical formulations of generative
models, which we leave as motivation for future work.
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