
Multiscale Matrix Decomposition

Anton Sugolov

April 18, 2025

In this project, we survey a method for low-rank matrix decompositions with broad applications through-
out signal and image processing. We focus on “Beyond Low Rank + Sparse: Multiscale Low Rank Matrix
Decomposition” proposed by Ong and Lustig [5] to generalize sparse and low-rank decomposition to in-
termediate data scales. An implementation of multiscale decomposition is provided along with the
necessary prerequisites to derive their formulation.

1 Sparse + Low Rank

We begin by motivating the results of Ong and Lustig [5] through the work of Candes et al. [4]. Suppose
a given data matrix Y may be decomposed into a low-rank component L and a sparse component S
(meaning that the entries are almost entirely zero, except in several areas that significantly contribute
to the overall rank):

Y = L0 + S0

In the above, the rank of L is not known, and neither is the number of non-zero elements of S, which
results in a very large number of unknowns in the problem. Surprisingly, Candes et al. [4] were able to
show that L0; S0 may be recovered (with high probability) by solving the tractable convex problem

minimize ∥L∥∗ + – ∥S∥1 subject to Y = L+ S

where ∥L∥∗ =
P

i ffi (L). To make sense of whether a particular feature belongs to the sparse component
or the low-rank component, the authors additionally introduce an incoherence condition on L that
enforces its singular vectors to be sufficiently spread out. Since the publication of their work, the sparse
+ low rank decomposition has been highly impactful for decomposing data matrices in many applications.
Some examples anticipated in the original work include

1. Video surveillance footage. Suppose Y represents frames of a video across time. A natural
decomposition for this data is Y = L+S where the low-rank L is useful for the ambient background
throughout the frames, while S captures various objects that appear in the video at different times.

2. Face recognition. Suppose Y represents a dataset of faces which is known to form a low-
dimensional surface [2]. In this case, L might represent a typical face in the dataset and S might
represent additional individual changes or shadows added to the image.

3. Preference identifcation. Suppose Y represents a dataset of user preferences on some website.
While most users may have the same general interests L, the sparse S may capture individual
variations that are predictive of their usage trends.

1

Other applications exist across all domains of modern signal processing. The more recent results of Ong
and Lustig [5] generalize these decompositions to provide a flexible framework for detecting correlations
within data matrices across a variety of data features.

2 Multiscale

If Y ∈ RM×N represents a matrix of data, such as an image with gray scale intensity values, the entries
often have some correlation structure. Multi-scale decompositions account for correlations with different
granularity, aiming to give a structured decomposition of Y : for example, detecting edges in a low scale
component, distinct objects in another an intermediate scale, and a background colour in the low scale.
In this section, we overview how to fit a multiscale decomposition and provide some examples on image
data. Throughout this section we summarize the original contributions of Ong and Lustig [5], including
helpful figures from their work.

Figure 1: An example of a multiscale decomposition of input Y into a sum of X1; X2; X3; X4 where each
Xi reflects the underlying features of Y with different scales.

2.1 Overview

Consider a data matrix Y ∈ RM×N . We define the scales of Y as a set of partitions of its entries {Pi}ni=1

which define blocks of Y (see Figure 2). Typically, Pi is set to be an order of magnitude greater than the
previous Pi−1. For each block b defined by scale-level partition Pi , with block widths mi × ni , we define
the reshaping operator Rb which projects Y onto the mi × ni block b (see Figure 3). The transpose
operator RTb injects each patch b into a zero matrix with the same shape as Y .

Figure 2: Partitions {Pi}Li=1 of a square Y . Figure 3: Reshape operators Rb, RTb .

The aim of multiscale decomposition is to write

Y =
X
i

Xi such that Xi =
X
b∈Pi

RTb (UbSbV
T
b)

where Ub; Sb; Vb form the rank rb SVD of the block b. That is, we write the matrix Y as a sum of local
truncated SVDs of different scales, aiming to locally reduce the rank of each block.

2

Note. The sparse + low rank decomposition (Section 1) may be viewed as a 2-scale decomposition
where P1 defines the whole matrix and P2 defines the 1× 1 scale. The example of the video surveillance
footage may be extended in the multiscale framework by adding an additional partition Pi to detect
persistent features at a custom time scale.

To fit a multiscale decomposition, we set up an appropriate convex problem whose minimum gives the
solution. Consider the motivating objective

min
X1;:::;XL

LX
i=1

X
b∈Pi

rank(Rb(Xi)) subject to Y =
LX
i=1

Xi

Several issues arise with this approach: (1) the objective is not convex, (2) splitting into patches makes
the sum over b ∈ Pi combinatorial in nature and (3) for smaller patches the rank penalty may be
excessive. For example, for an element-wise partition a rank 1 penalty and a 1-sparse matrix carry the
same cost. Luckily, an appropriate convex problem can be set up by relaxing the rank minimization to
minimization in a special norm.

2.2 Convex problem
We define several norms that are useful for setting up a computable optimization objective, whose
minimum is the desired multiscale matrix decomposition.

Definition 2.2.1. The Ky-Fan k norm of a matrix X ∈ RM×N with singular values {ffi (X)}1≤i≤min{M;N}

∥M∥KF;k =
kX
i=1

ffi (M) (1)

Definition 2.2.2. The nuclear norm of X ∈ RM×N is ∥X∥nuc = ∥X∥KF;min{M;N}.

Definition 2.2.3. The maximum singular value norm of X ∈ RM×N is ∥X∥msv = ∥X∥KF;1.

Definition 2.2.4. For block partition Pi of X ∈ RM×N , the block-wise nuclear norm of the i-th scale

∥X∥(i) =
X
b∈Pi

∥RbX∥nuc (2)

is the sum of the nuclear norms of each patch b ∈ Pi .

The associated convex optimization problem to compute the multiscale components of the matrix is

minX1;:::;XL

LX
i=1

–i ∥Xi∥(i) subject to Y =
LX
i=1

Xi (3)

typically –i ∼
√
mi +

√
ni +

p
log(MN=max{mi ; ni}) where this heuristic follows from optimal values

for Gaussian random matrices [1].

Minimization objective. We formulate the problem with the alternating direction method of multi-
pliers, by writing a separable objective with an equality constraint. For the L scales corresponding to

3

the block partitions of Y :

minX1;:::;XL;Z1;:::;ZL
I

(
Y =

LX
i=1

Xi

)
+

LX
i=1

–i ∥Zi∥(i) (?)

subject to Xi = Zi

where I represents the (inverse) indicator function and –i follows the initialization of Equation 3.

Theorem 1. Consider the vector space of matrices with the same block-wise row space as the scale Xi :

Ti =

(X
b∈Pi

R⊤
b

`
UbX

⊤
b + YbV

⊤
b

´
: Xb ∈ Cni×ri ; Yb ∈ Cmi×ri

)

Let —i j = max{∥Nj∥∗(i) | Nj ∈ Tj ; ∥Nj∥∗(j) ≤ 1} where ∥ · ∥∗(i) = maxb∈Pi ∥Rb(·)∥msv is the dual norm
associated to the block-wise nuclear norm. If regularization parameters –i can be chosen such thatX

j ̸=i
—i j
–j
–i
<

1

2

then the convex problem (?) has a unique solution {Xi}Li=1 which is the desired multiscale decomposition.

Theorem 1 guarantees that the minimization (?) has the desired solution. We omit the proof since it
is technical (requiring several facts about Ti and the dual block-wise nuclear norm), and proceed with
obtaining the solution {Xi}Li=1. To compute this decomposition, the authors propose the alternating
direction method of multipliers [3], which we now briefly overview.

2.3 Alternating direction method of multipliers
For the sake of completion, we briefly summarize the method of dual ascent and method of multipliers.
Afterward, we discuss the alternating direction method of multipliers (ADMM) and apply it to the matrix
factorization problem at hand.

1. The method of dual ascent for convex differentiable f (p. 529, Gallier Quaintance Vol. II) is posed as

minx f (x) subject to Ax = b (4)

The associated Lagrangian is then L(x; –) = f (x) + –T (Ax − b). By defining the convex conjugate
f ∗(y) = supx∈U(y

T x − f (x)); y ∈ Rn, the dual formulation gives a unique – ∈ Rm and x– ∈ Rn with

G(–) = L(x–; –) = inf
x∈Rn

L(x; –)

If – → x– is continuous, then G is differentiable, and ∇G– = Ax– − b for any solution of the dual
problem. The dual ascent method therefore becomes gradient ascent applied to the dual function G,
and is given by the update steps

xk+1 = argmin
x
L(x; –k)

–k+1 = –k + ¸k(Axk+1 − b)

¸k is some step size, which is difficult to determine in this case.

4

2. The method of multipliers is formulated for the same convex problem (Equation 4), except the La-
grangian is augmented by an addition penalty

Lȷ(x; –) = f (x) + –T (Ax − b) + ȷ

2
∥Ax − b∥22

where ȷ is a certain penalty parameter. Applying the method of dual descent to Lȷ yields update steps

xk+1 = argmin
x
Lȷ(x; –k)

–k+1 = –k + ȷ(Axk+1 − b)

In particular, ¸k = ȷ is able to be determined. Under some mild conditions on A, the above can be
shown to converge to a unique solution, which is in contrast to simple dual ascent (p. 533, Gallier
Quaintance Vol. II).

3. The alternating direction method of multipliers was proposed by Boyd et al. [3] for separable opti-
mization objectives subject to an equality constraint

minx;z f (x) + g(z) (?)
subject to Ax + Bz = c

where f ; g are convex, x ∈ Rn, z ∈ Rm, c ∈ Rp, and A ∈ Rp×n; B ∈ Rp×m. The problem can
be formulated similarly to the method of multipliers (p. 533, Gallier Quaintance Vol. II), where the
constraint is enforced with an augmented Lagrangian

Lȷ(x; z; u) = f (x) + g(z) + uT (Ax + Bz − c) + ȷ

2
∥Ax + Bz − c∥22

The update steps are implemented via dual ascent (p. 529, Gallier Quaintance Vol. II) for both x; z :

xk+1 = argmin
x
Lȷ(x; zk ; uk)

zk+1 = argmin
z
Lȷ(xk+1; z; uk)

uk+1 = uk + ȷ(Axk+1 + Bzk+1 − c)

Note that the dual update is done after the z-update but before the x-update, so the roles of x; z are
not quite symmetric. Interestingly, these alternating updates can be viewed as a type of Gauss-Seidel
pass over x; z instead of the typical joint update of (x; z).

Returning to the objective (?),

Lȷ(X;Z; U) = I

(
Y =

LX
i=1

Xi

)
+

LX
i=1

–i ∥Zi∥(i) + UT (X − Z) + ȷ

2
∥X − Z∥22

To compute the updates for the multiscale objective (?), it suffices to compute the proximal operators

argmin
X
Lȷ(X;Z; U) argmin

Z
Lȷ(X;Z; U)

of the corresponding I
n
Y =

PL
i=1Xi

o
,
PL

i=1 –i ∥Zi∥(i). For the indicator, it is simply the projection
operator to the set. For the block-wise nuclear norm, Ong and Lustig [5] show that the proximal steps
are given by the singular value threshhold and for the scale regularizer –i .

5

Definition 2.3.1. Given a regularization – and X ∈ Rm×n, the singular value threshhold is

SVT(X; –) = Umax(Σ− –; 0)V T (5)

where X = UΣV T is the SVD of X, and it is understood that Σ− – is taken componentwise. In other
words we modify the SVD so that for each singular value ffi , we reset ff′i = max(ffi − –; 0).

Definition 2.3.2. Given a regularization –i and X ∈ Rm×n, with partition Pi of scale i , the block-wise
singular value threshhold is

BlockSVT(X; –i) =
X
b∈Pi

RTb SVT(Rb(X); –i) (6)

That is, we simply threshhold each block in the partition by –i .

Combining the above discussion, the algorithm to compute the multiscale matrix decomposition is given
by Algorithm 1. For the sake of summary, we omit certain details from the original work [5].

Algorithm 1 Multiscale Image Decomposition via ADMM

Input: Image Y , block sizes {mi ; ni}Li=1, parameters {–i}Li=1, ȷ
Initialize: X(0)

i ; Z
(0)
i ; U

(0)
i ← 0 for i = 1; : : : ; L

for k = 1 to K do
// X update
for i = 1 to L do
X

(k)
i ← (Z

(k−1)
i −U(k−1)

i) + 1
L

“
Y −

PL
j=1(Z

(k−1)
j − U(k−1)

j)
”

end for
// Z update
for i = 1 to L do
Z

(k)
i ← BlockSVT

“
X

(k)
i + U

(k−1)
i ; –i=ȷ

”
end for
// U update, dual variables
for i = 1 to L do
U
(k)
i ← U

(k−1)
i − (Z

(k)
i − X

(k)
i)

end for
end for
Return: {X(K)

i }Li=1

Figure 4: A heuristic represen-
tation of the ADMM approach
to obtain a multiscale decompo-
sition.

3 Results

We implement Algorithm 1 in JAX and evaluate on a simple test case. The results when ȷ = 0:5 and
K = 200 are summarized in Figure 5. For the exact implementation details, see the attached the Jupyter
notebook, or the implementation on Google Colab:

Google Colab (https://tinyurl.com/389ddhps)

6

https://colab.research.google.com/drive/1Xic21fLrptruF29gM3CHUOBcYxeGjT_3?usp=sharing

Figure 5: Multiscale decomposition of a cat image (top left) using the (Algorithm 1) with ȷ = 0:5
and K = 200 iterations using scales {1; 2; 4; : : : ; 64}. Scale-level features are apparent after multiscale
decomposition; 1 × 1 accurately capture the edge features of the image, 16 × 16 highlight the hearts
present in the original, while 64× 64 captures a silhouette of the cat.

The results of Figure 5 demonstrate that the ADMM approach indeed captures certain scale-level fea-
tures. Some scales are somewhat noisy, and would likely improve from more iterations and a larger
image size: the original authors use 256 × 256 images with ȷ = 0:5; K = 1024. Squares of certain
patch resolution are visible in the decomposition in other components, which is due to the fixed partition
throughout the iterations. Ong and Lustig [5] propose incorporating a shift operator to threshholding
steps

Z
(k)
i ← 1

|S|
X
s∈S

SHIFT−s

“
BlockSVT–i=ȷ

“
SHIFTs(X

(k)
i + U

(k−1)
i)

””
where s ∈ S is randomly chosen from some a possible set of translations. This approach would likely lead
to improved quality in the decomposition, reducing the graininess present in the different components.
More refined components may be selected to better capture the significant features in the image; for
example, the 2× 2 and 4× 4, 32× 32 scales are less informative in Figure 5.

4 Summary

In this project, we introduced multiscale matrix factorizations [5], which generalize sparse and low-rank
decompsitions to a general feature detection setting. The prerequisites to define the convex problem
were set forth in order to define the ADMM objective, which we implemented in JAX to solve the
multiscale matrix decomposition. After running on a test case, the possible modifications that could
improve the decomposition were discussed, demonstrating the flexibility of multiscale decomposition to
extract desired data features.

7

References

[1] Afonso S. Bandeira and Ramon van Handel. “Sharp nonasymptotic bounds on the norm of random
matrices with independent entries”. In: The Annals of Probability 44.4 (July 2016). issn: 0091-1798.
doi: 10.1214/15-aop1025. url: http://dx.doi.org/10.1214/15-AOP1025.

[2] R. Basri and D.W. Jacobs. “Lambertian reflectance and linear subspaces”. In: IEEE Transactions on
Pattern Analysis and Machine Intelligence 25.2 (2003), pp. 218–233. doi: 10.1109/TPAMI.2003.1177153.

[3] Stephen Boyd et al. “Distributed Optimization and Statistical Learning via the Alternating Direction
Method of Multipliers”. In: Foundations and Trends® in Machine Learning 3.1 (2011), pp. 1–122.
issn: 1935-8237. doi: 10.1561/2200000016. url: http://dx.doi.org/10.1561/2200000016.

[4] Emmanuel J. Candes et al. “Robust Principal Component Analysis?” In: (2009). arXiv: 0912.3599
[cs.IT]. url: https://arxiv.org/abs/0912.3599.

[5] Frank Ong and Michael Lustig. “Beyond Low Rank + Sparse: Multiscale Low Rank Matrix Decom-
position”. In: IEEE Journal of Selected Topics in Signal Processing 10.4 (2016), pp. 672–687. doi:
10.1109/JSTSP.2016.2545518.

8

https://doi.org/10.1214/15-aop1025
http://dx.doi.org/10.1214/15-AOP1025
https://doi.org/10.1109/TPAMI.2003.1177153
https://doi.org/10.1561/2200000016
http://dx.doi.org/10.1561/2200000016
https://arxiv.org/abs/0912.3599
https://arxiv.org/abs/0912.3599
https://arxiv.org/abs/0912.3599
https://doi.org/10.1109/JSTSP.2016.2545518

	Sparse + Low Rank
	Multiscale
	Overview
	Convex problem
	Alternating direction method of multipliers

	Results
	Summary

