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1 Introduction

In a series of seminal papers, Felix C. Otto introduced a geometric perspective
on the normalized solutions of certain PDEs as gradient flows on the space of
probability densities[6, 8]. Given an energy functional, the Otto calculus produces a
PDE such that the solutions can be interpreted as gradient flows of the functional
in the appropriate sense. Rather strikingly, the heat equation can be derived from
the Shannon-Boltzmann entropy using this construction. In this project, we survey
the necessary prerequisites to Otto’s derivation and present Otto’s initial results.
Afterwards, we provide the derivation of the Fokker-Planck equation through this
lens, and discuss the applications for stochastic processes and sampling algorithms.
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2 Prerequisites

We first develop the prerequisites to understand the contributions of Otto. First,
we describe the role of the continuity equation and its relationship to the Eulerian
transport formulation, define the Wasserstein metric Wp, the space of Lp probability
densities, and describe the Benamou-Brenier representation for the distance Wp.

2.1 Continuity equation

This fluid mechanics settings for the L2 Monge-Kantorovich transport problem was
originally discussed in the work of Benamou and Brenier [3] “A computational fluid
mechanics solution to the Monge-Kantorovich mass transfer problem”, and moti-
vated the dynamical perspective through the continuity equation. The continuity
equation from physics describes the evolution of a quantity whose total mass is
preserved

d

dt
ȷt + div(ȷtvt) = 0 :

Here, ȷt(x) is a measure that evolves in t by a time dependent vector field vt(x)
such that the total mass

´
ȷt = 1 is conserved under flow by by vt . The continuity

equation is suited for transport in the the Eulerian formalism, in which the model
is described through its density and velocity in time. For an initial ȷ0, we find the
solution of the ODE given by (

y ′x(t) = vt(yx(t))

yx(0) = x

Evolving individual points with Yt(x) = yx(t), the measure at time t is given by
ȷt = (Yt)#ȷ0. For this formalism to preserve mass, ȷt and vt must together solve
the continuity equation.

Definition 2.1.1. Consider Ω ⊂ Rd is a bounded domain or Ω = Rd . A family of
pairs of measures and vector fields (ȷt ; vt) for t ∈ [0; 1] satisfying vt ∈ L1(ȷt ;Rd)
and

´ T
0
∥vt∥L1(ȷt)

dt <∞ solves the continuity equation in the distributional sense
if for every ffi ∈ C1

c ([0; 1]× Ω)

ˆ T

0

ˆ
Ω

d

dt
ffidȷtdt +

ˆ T

0

ˆ
Ω

∇ffi · vt dȷtdt = 0

and in the weak sense if for every  ∈ C1
c (Ω), t 7→

´
 dȷt is abs. continuous in

t, and for a.e. t,
d

dt

ˆ
Ω

 dȷt =

ˆ
Ω

∇ · vt dȷt :

2



2.2 Wasserstein metric Wp and the space Pp(Rd)

For the sake of summary, we focus on the case of Rd . All of the following stated
results generalize to a Polish space X.

Consider the transport problem for probability measures on Ω with cost cp(x; y) =
|x − y |p for p ∈ [1;∞). We restrict our attention to the space of measures where
the cost cp is finite, which are those with finite Lp norm.

Pp(Ω) =
ȷ
— ∈ P(Ω)

˛̨̨ ˆ
Ω

|x |p d— <∞
ff
:

Note that p < q =⇒ Pp(Ω) ⊂ Pq(Ω). The Wasserstein distance Wp defines a
metric on Pp(Ω) associated with the minimal transport cost with cp.

Wp(—; ) = min

ȷˆ
Ω×Ω

|x − y |p d‚
˛̨̨
‚ ∈ Π(—; )

ff1=p

:

It can be shown that the Wasserstein distanceWp(—; ) is indeed a metric on Pp(Ω).

Definition 2.2.1. The Wasserstein space of order p ∈ [1;∞), is the metric space

Wp(Ω) = (Pp(Ω);Wp) :

The metric Wp induces a certain topology on Wp(Ω). A natural question is how
it is related to the topology induced by weak convergence. Convergence in the
Wasserstein metric turns out to be equivalent to weak convergence if Ω is compact.
The general case is summarized by the following theorem.

Theorem 1. In the space Wp(Ω),

Wp(—n; —) → 0 ⇐⇒ —n → — weakly;
ˆ

|x |p d—n →
ˆ

|x |p d— :

2.3 Absolute continuity in Wp

In order to build towards the gradient flows of Otto calculus, we must first discuss
properties of curves in Wp(Ω). A curve in Wp(Ω) is defined as a mapping —t :
[0; 1] → Pp(Ω). The curve —t is absolutely continuous if there exists g ∈ L1([0; 1])
such that

Wp(—t0 ; —t1) ≤
ˆ t1

t0

g(s) ds

for every 0 ≤ t0 < t1 ≤ 1. The metric derivative of the curve t 7→ —t at t is
defined as

|—′| (t) = lim
h→0

Wp(—t+h; —t)

h
:

The absolute continuity of —t is equivalent to the existence of a vector field vt so
that (—t ; vt)t solve the continuity equation of Section 2.1. The equivalence of the
two conditions is formally presented in the following theorem in generality, and is
originally due to Ambrosio [1].

3



Theorem 2. Let (—t)t∈[0;1] be an absolutely continuous curve in Wp(Ω) for p > 1
and compact Ω ⊂ Rd . For almost every t ∈ [0; 1], there exists a vector field
vt ∈ Lp(—t ;Rd) such that

• (—t ; vt); t ∈ [0; 1] satisfy d
dt
—t + div(vt—t) = 0 in the weak sense and

• for almost every t, ∥vt∥Lp(—t)
≤ |—′| (t).

Conversely, if (—t)t∈[0;1] is a family of measures in Pp(Ω), and for each t there is
vt ∈ Lp(—t ;Rd) with

´ 1

0
∥vt∥Lp(—t)

dt < ∞ satisfying d
dt
—t + div(vt—t) = 0, then

—t is absolutely continuous and ∥vt∥Lp(—t)
≤ |—′| (t).

2.4 Benamou-Brenier formula
Consider the case p = 2 for the purpose of demonstration. In Section 2.1 we
discussed the Eulerian transport perspective, and the evolution of a measure by a
vector field, which satisfies the continuity equation. The quadratic action for a
measure — ∈ P2(Rn) and a measurable vector field v : Rn → Rn is defined as

A(v; —) =

ˆ
Rn

∥v∥2 d— = ∥v∥L2(—) :

The Benamou-Brenier Formula is a representation theorem, showing for —0; —1 ∈
P2(Rn), the curves —t minimizing the transport cost W2(—0; —1) must be solutions
to the continuity equation (—t ; vt)t :

W 2
2 (—0; —1) = min

ȷˆ 1

0

∥vt∥L2(—t)
dt s.t.

d

dt
—t + div(vt—t) = 0 in (0; 1)× Rn

ff
:

(1)
The representation formula generalizes forWp, requiring the definition of another ac-
tion functional, however the idea of the representation is the same. This formulation
through the principle of least action is reminiscent of geodesics from Riemannian
geometry: on a Riemannian manifold (M; g), the geodesics ‚(t) with t ∈ [0; 1]
minimize the energy functional

E(‚) =
1

2

ˆ 1

0

g‚(t)(‚̇(t); ‚̇(t)) dt :

This hints at the special geometric structure of P2(Ω) induced by the Wasserstein
metric, and provides a motivation for some of the methods of Otto calculus.

3 Otto Calculus

We first review Otto’s original construction of the gradient flow of an energy func-
tional for the porous medium equation [8], summarize the relationship to the previ-
ous theory, give a new perspective on the heat equation, and present some interesting
applications to stochastic processes and statistical learning.
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3.1 The Geometry of the Porous Medium Equation
In the work “The Geometry of Dissipative Evolution Equations: The Porous Medium
Equation”, Otto [8] describes a way to derive the weak solution of the porous medium
equation as the gradient flow of a particular energy functional. Prior to this work,
Newman [7] showed the existence of a Lyapunov function for the equation, while
Otto’s construction extends to general energy functionals. The key difference was
the coupling of the tangent space with solutions to the continuity equation, hinting
at the connection with absolute continuity of curves in Wp.

The porous medium equation for m ≥ 1 is given by

@ȷ

@t
−∆ȷm = 0 : (2)

The aim is to derive this equation in terms of an evolution of ȷ given by the gradient
flow of an energy functional. Given a Riemannian manifold (M; g) and functional
E on M, the dynamical system given by

@ȷ

@t
= −∇E(ȷ)

is called the gradient flow on M generated by E. Crucially, we can identify tangent
vectors s ∈ TȷM with their co-tangent vectors through the metric tensor g ,

g(∇E; s) = dE (s) :

Therefore the gradient flow can be represented dually through

gȷ

„
@ȷ

@t
; s

«
+ dȷ E (s) = 0 : (3)

We work to extend this to the case of functions ȷ : Rd → R by considering

M =

ȷ
ȷ
˛̨̨
ȷ ≥ 0;

ˆ
ȷ = 1

ff
TȷM =

ȷ
s
˛̨̨ ˆ

s = 0

ff
:

We define the metric tensor gȷ. First, identify tangent space of functions s with
functions p coupled with ȷ heuristically through the continuity equation:

TȷM ∼=
n
p : Rd → R

˛̨̨
− div(ȷ∇p) = s

o
:

With this identification, define

gȷ(s1; s2) =

ˆ
ȷ∇p1 · ∇p2 =

ˆ
s1p2 (4)

where the second equality holds after integrating by parts. The functional E asso-
ciated with (2) is defined as

E(ȷ) =

(
1

m−1

´
ȷm m ̸= 1´

ȷ ln ȷ m = 1
:
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Through the representation given in (4), we compute

dȷ E (s) = gȷ(∇E; s) =
(

m
m−1

´
ȷm−1s m ̸= 1´

(ln ȷ+ 1)s m = 1
: (5)

We will specify the exact computation of the variational derivative in the next
section. Using the dual representation given by (3), we write −div(ȷ∇p) = s, and
express

0 = gȷ(ȷt ; s) + dEȷ(s) =⇒
(
0 =

´
@ȷ
@t
p + m

m−1

´
ȷm−1s m ̸= 1

0 =
´
@ȷ
@t
p +

´
(ln ȷ+ 1)s m = 1

=⇒
(
0 =

´
@ȷ
@t
p − m

m−1

´
ȷm−1div(ȷ∇p) m ̸= 1

0 =
´
@ȷ
@t
p −

´
(ln ȷ+ 1)div(ȷ∇p) m = 1

:

Integrating by parts, we find in both cases
ˆ „

@ȷ

@t
−∆ȷm

«
p = 0

for all p, and under appropriate conditions, this would coincide with the notion
of a weak solution of Section 2.1. This construction introduces various interesting
geometric relations, and in particular, the coupling to cotangent vectors through the
continuity operator is related to the notion of absolutely continuous curves discussed
in Section 2.3.

3.2 Wasserstein Gradient Flows
We formalize the derivation presented in the previous section and interpret it for a
general energy functional.

Consider an energy function E : P2(Rd) → (−∞;∞]. Suppose —t is a gradient
flow1. The key connection to the space Wp is that this must be an absolutely
continuous curve with metric derivative in L2. By Theorem 2, —t satisfies the
continuity equation

@

@t
—t + div(vt—t) = 0 (6)

for some ∥vt∥L2(—t)
∈ L1loc(0;∞). If it were possible to compute the gradient of E

in the appropriate way, the gradient flow condition vt = −∇WE(—t) would allow
us to express (6) as

@

@t
—t = div(∇WE(—t)—t) : (7)

1Its definition and properties are explored in generality on metric spaces in “Gradient Flows
in Metric Spaces and in the Spaces of Probability Measures, and Applications to Fokker-Planck
Equations with Respect to Log-Concave Measures” by Ambrosio [1]. For the sake of demonstration,
we omit some detail.

6



As outlined in Otto’s derivation, to represent this dually, for each ȷ ∈ P2(Rd) we
must compute the action of dȷE on every s ∈ TȷP2(Rd) through the derivative

d

dt

˛̨̨
t=0
E(ȷt)

where ȷt is an absolutely continuous curve with ȷ0 = ȷ and initial velocity s.
Fixing arbitrary test function ’ ∈ C∞

c (Rn) with vector field ∇’ = v , we consider
the curve ȷt = (I + tv)#ȷ, which in effect turns the above differentiation into
a Gateaux derivative. To identify gradients as in (5), consider a general energy
functional given by

U(ȷ) =
ˆ
Rd

U(ȷ) dx :

Then

dȷ U(s) =
d

dt

˛̨̨
t=0

U(ȷt) =
d

dt

˛̨̨
t=0

ˆ
Rd

U(ȷt) dx

= −
ˆ
Rd

U ′(ȷt) div(ȷtv) dx

=

ˆ
Rd

(∇U ′(ȷt) · v) ȷt dx : (by parts)

Through identifying ∇WU(ȷ) = ∇U ′(ȷ), we obtain a tangent vector vt = ∇U ′(ȷt)
which gives a weak solution to the continuity equation (2.1.1). Heuristically, this
gives the correct action of dȷU on TȷP2(Rd) through the identification with the
tangent space. From (7) we can show that the PDE generated by choosing E = U
becomes

@

@t
—t = div(∇U ′(—t)—t) : (8)

To summarize, we began with a general energy functional U , and identified its
variational derivative with solutions (—t ;∇WU(—t)) of the continuity equation. In
particular, the curves —t can be interpreted as a U-maximizing flow in P2(Rd). This
has two surprising interpretations for solutions to several known PDEs.

Example 1. Consider U(ȷ) = ȷ log ȷ. The corresponding U(ȷ) is the Shannon-
Boltzmann logarithmic entropy

S(ȷ) =

ˆ
Rd

ȷ log ȷ dx :

We can compute ∇U ′(ȷ) = 1
ȷ
∇ȷ. Substituting into 8, we recover the heat equation!

@ȷ

@t
= div

„„
1

ȷ
∇ȷ
«
ȷ

«
= div (∇ȷ) = ∆ȷ :

As stated in C. Villani [12] (p. 438), this can be interpreted through the following
sentence:
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The gradient of Boltzmann’s entropy is the Laplace operator.

Solutions to the heat equation can be thought of as producing entropy-maximizing
flows in P2(Rd).

Example 2. Consider a potential V : Rd → R such that
´
e−V (x) dx <∞. Define

the functional
U(ȷ) = S(ȷ) +

ˆ
Rd

V (x)ȷ(x) dx

with corresponding U(ȷ) = ȷ log ȷ+ V ȷ. We can compute

∇U ′(ȷ) =
1

ȷ
∇ȷ+∇V:

Substituting into 8, we recover the Fokker-Planck equation.

@ȷ

@t
= div

„„
1

ȷ
∇ȷ+∇V

«
ȷ

«
= ∆ȷ+ div ((∇V )ȷ) :

In sum, through the Otto calculus we can generate PDEs whose solutions give paths
in P2(Rd) which are correspond to the maximization of a given functional.

3.3 Reformulation of Flows in W2

In the past section, we heuristically made the correct identification for the gradient
flow to coincide with notions of Riemannian geometry. That is for function on
manifold M, Φ : M → R, we made the analogous identification

dxΦ(v) = ⟨∇xΦ; v⟩x :

To extend these ideas, we want to connect the Otto calculus with the past theory
developed for absolutely continuous curves on P2(Ω). To this end, we first consider
the more general setting of a geodesic space, which is a type of metric space
(X ; d), in which every x; y ∈ X have a distance minimizing curve.

Definition 3.3.1. Consider an energy function Φ : X → R∪{+∞}, X ∈ C([0; T );X )∩
ACloc((0; T );X ). X is a trajectory of the gradient flow of Φ if for all t > 0
Φ(X(t)) < ∞ and for any y ∈ X , there is a geodesic ‚s : [0; 1] → X with
‚0 = X(t) and ‚1 = y .

d+

dt

„
d(X(t); y)2

2

«
≤ d+

ds

˛̨̨
s=0

Φ(‚s)

where d+=dt denotes the lim sup of difference quotients.

When Φ is –-convex we have the Evolution Variational Inequality (EVI–)

d+

dt

„
d(X(t); y)2

2

«
≤ Φ(y)− Φ(X(t))− –

d(X(t); y)2

2

8



and it can be shown2 [2] that EVI– can be used to define a gradient flow X for
–-convex energy Φ; in this case, the definitions are equivalent.

Now, we consider the particular case of curves on P2(Ω). Consider two absolutely
continuous curves —t ; —̂t 2.3. Recall that as a consequence of Theorem 2 they must
satisfy the continuity equation (2.1.1). That is, they are solutions (—t ; vt); (—̂t ; v̂t)
with vt ; v̂t ∈ L2((t1; t2) × Ω) with respect to their respective —t ; —̂t . In this case,
we can formulate the derivative of the Wasserstein distance through their flows

d+

dt

„
W2(—t ; —̂t)

2

2

«
= −

ˆ
M

⟨∇̃ t ; vt⟩ d—t −
ˆ
M

⟨∇̃ ̂t ; v̂t⟩ d—t (9)

which is shown in Chapter 23 of [12]. Here, ∇̃ denotes the subgradient of (d2=2)-
convex functions  t ;  ̂t that give the solution of the Monge problem

exp(∇̃ t)#—t = —̂t ; exp(∇̃ ̂t)#—̂t = —t :

If we guess —̂t to be a constant target measure, and —t to evolve towards —̂t
through a gradient flow, then heuristically (from the Otto calculus) we expect
vt = −∇U ′(—t) for —t belonging to —t ∈ W 1;1(Ω), and is true under some regularity
conditions.

We further extend this by describing certain convexity inequalities where the above
may be used in. Let Ω have a Gibbs-style reference measure  ∝ exp(−V ) with
V ∈ C2. Let —0; —1 ∈ P2(Ω) which are absolutely continuous with respect to
. Define ȷ = d—0

d
be the Radon-Nikodym density, and let  be a (d2=2)-convex

function with T = exp(∇̃ ) the Monge transport —0 → —1. For t ∈ [0; 1], let
—t = (exp(t∇̃ ))#—. It can be shown3[12] that for the Shannon-Boltzmann entropy
U(ȷ) =

´
ȷ log ȷ d can be writen with the tangent formulation

U(—1) ≥ U(—0) +

ˆ
⟨∇̃ ;∇ȷ⟩ d +K

W2(—0; —1)
2

2

for some constant K. By Cauchy-Schwarz, we can further express

U(—1) ≥ U(—0)−
„ˆ

ȷ
˛̨̨
∇̃ 
˛̨̨2
d

« 1
2

0BB@ˆ
|∇ȷ|2 =ȷ d| {z }

Fisher information

1CCA
1
2

+K
W2(—0; —1)

2

2
:

Denoting the Fisher information as a function I , and by Equation 9,

U(—1) ≥ U(—0)−
p
I(—0)W2(—0; —1) +K

W2(—0; —1)
2

2
2Chapter 11, Theorem 11.15. Ambrosio, Brué, and Semola [2]
3Theorem 23.14, Chapter 23. Villani [12]
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This example of a HWI inequality gives a familiar looking convexity expression. Note
that the fisher information plays an analogical role to slope, controlling the linear
change between —0; —1 when transport is a gradient flow.

3.4 Application: Stochastic Differential Equations
The last example gives a variational formulation to the evolution of laws of certain
stochastic processes [6]. For a particle at position X(t) evolving according to the
Ito stochastic differential equation

dX(t) = −∇V (X(t)) +
p
2˛−1dW (t)

The particle is acted upon by potential V with random fluctuations, introduced the
Wiener process W (t). The parameter ˛−1 ∝ T models the increased amount of
noise W with greater temperature T . It is known [9] that the probability law ȷ(t; x)
governing X(t) must satisfy the Fokker-Planck equation

@ȷ

@t
= ˛−1∆ȷ+ div ((∇V )ȷ) :

The interpretation provided by Section 3.2 suggests that the laws ȷ(x; t) are maxi-
mizing the free energy functional

U(ȷ) = ˛−1S(ȷ) +

ˆ
Rd

V (x)ȷ(x) dx :

The evolution of a particle X(t) can be thought of as its probability ȷ(x; t) changing
in this way.

3.5 Application: Statistical Learning
The applications of Otto calculus has given rise to recent interesting tools for the
analysis of sampling algorithms in generative models [11], [13]. The flow of maxi-
mizing an information functional is a key interpretation for the evolution of points
in a generative model. This is possible since many algorithms employ a discretized
version of Langevin Monte Carlo, which parametrizes a potential function V over
empirical data [11], and samples with the dynamics outlined in Section 3.4. To
demonstrate this, we described the relationship to the KL-divergence with a target
density [4].

The KL-divergence is a statistical functional, which measures the difference in in-
formation between two distributions, namely P; P ∗ with densities ȷ; ȷ∗. Define

DKL(P ||P ∗) =

ˆ
ȷ log

„
ȷ

ȷ∗

«
:

Let ȷ∗ be the target data density, given in the Gibbs form

ȷ∗(x) = exp(−V (x)) :
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We can therefore express

DKL(P ||P ∗) =

ˆ
ȷ log ȷ+

ˆ
− log (ȷ∗) ȷ = S(ȷ) +

ˆ
V ȷ :

In particular, we arrive to the Fokker-Planck form of Section 3.4. The gradient
flow structure of the above equation might suggest that sampling points through
Langevin Monte Carlo maximize the speed of convergence to an equilibrium. In fact,
the tools of Otto calculus can be used to state and prove certain inequalities about
the speed of convergence of sampling, in particular the exponential convergence of
Langevin Monte Carlo. To give a flavour of these results, we state one convergence
theorem, omitting much detail.

Theorem 3. The target measure ȷ∗ satisfies a log-Sobolev inequality if and only
if for all ȷ0 ∈ P2(Rd), ȷ0 absolutely continuous with respect to Lebesgue measure,
and Langevin dynamics t 7→ ȷt

4 satisfy the bound

DKL(ȷt || ȷ∗) ≤ exp(−2¸t)DKL(ȷ0 || ȷ∗) :

A log-Sobolev inequality for the target ȷ∗ guarantees that for some C > 0 and all
smooth f ,

Eȷ∗ [f 2 ln(f 2=Eȷ∗ [f 2])] ≤ 2C Eȷ∗ [∥∇f ∥2] :

That is, exponential convergence to the target is guaranteed with LMC if the log-
Sobolev inequality of the target is satisfied. The above theorem can be interpreted
as a domination condition on the Wasserstein gradient of a Langevin diffusion.
A comprehensive mathematical analysis of statistical samping tools are a growing
area of research [5], since they provide guarantees for many widely used learning
algorithms. A thorough treatment of current results is provided in “Log-Concave
Sampling” by S. Chewi [4].

4In particular the evolution represented by the previous gradient flow formulation.
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A Notes on Referenced Works

The following chapters and articles were used as a central reference in the above.

• Chapter 4, 5 of Santambrogio [10], Optimal Transport for Applied Mathe-
maticians: Calculus of Variations, PDEs, and Modeling in Section 2.1-2.3.

• Chapter 11, 17, 18 of Ambrosio, Brué, and Semola [2], Lectures on Optimal
Transport in Section 2.4, 3.2.

• Otto [8], “The Geometry of Dissipative Evolution Equations: The Porous
Medium Equation” in Section 3.1.

• Jordan, Kinderlehrer, and Otto [6], “The Variational Formulation of the Fokker–
Planck Equation” in Section 3.3.

• Chewi [4], “Log-Concave Sampling” in Section 3.4.
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