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May 9: Lecture 1

Syllabus
Books J. Sheather, A Modern Approach to Regression w/ R and D. Montgomery, Linear Regression Analysis.

Review
Definition 1. A sample space S is the set of possible events. A random variable is a function X : S → R
assigning a number to elements of the sample space.

Constants can also be pseudo random variables. These are called degenerate random variables that have
a degenerate distribution since they have infinite cdf.

Definition 2. For an event A ⊂ S, we define the indicator function IA as

IA(s) =

(
1; s ∈ A
0; s =∈ A

These are important since we later use them to create dummy variables in linear regression. When we write
an inequality involving random variables, we mean that it holds for all elements of the sample space. I.e.
X ≥ Y =⇒ X(s) = Y (s);∀s ∈ S.

Example 1. Consider S = {1; 2; 3; 4; 5; 6}. For s ∈ S, X(s) = s, let Y (s) = X(s) + I6(s). Then Y = X for
all s ∈ S except 6, where Y = 7; X = 6.

Definition 3. Discrete r.v. are functions from a countable sample space, and continuous r.v. are functions
from an uncountable sample space. There are also mixture random variables, which are continuous/discrete
for different parts of the sample space. Random variables can be univariate and multivariate as well.

Example 2. The multinomial distribution is an example of a discrete multivariate random variable.

Definition 4. If X is a random variable, the p.d.f. is the derivative of the c.m.f. As well, P(a ≤ X ≤ b) =´ b
a
f (x)dx where f (x) is pdf. Similar thing holds for discrete r.v.

Proposition 1. The expectation of two random variables is linear. For Z = aX + bY , X; Y r.v., then
E(Z) = aE(X) + bE(Y ).

Definition 5. The variance of X is V (X) = E(X − —x)
2. The sample variance s2 =

P
(xi−x)2
n−1 . Note we

divide by n − 1 so that it is an unbiased estimator (STA261).

Some properties:

• V (X) ≥ 0

• V (aX + b) = a2V (x)

• V (X) = E(X2)− E(X)2

• V (X) ≤ E(X2)

• ffX =
p
V (X)

Note: In linear regression, the variance of the predicted variable depends on the slope of regression line but
not on the intercept (second property).

Let X1; X2; Y be r.v. and A be an event. Let Z = aX1 + bX2. Then

• E(Z | A) = aE(X1 | A) + bE(X2 | A)

• E(Z | Y = y) = aE(X1 | Y = y) + bE(X2 | Y = y)

• E(Z | Y ) = aE(X1 | Y ) + bE(X2 | Y )
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Proposition 2. (Laws of Total Expecation and Variance) E(E(Y | X)) = E(Y ) and V (X) = V (E(X |
Y )) + E(V (X | Y )).

We will see that linear regression is a conditional r.v., and the above will be very useful. For X1; : : : ; Xn i.i.d.
random variables, x1 : : : xn realizations, then x =

P
xi
n

. The sample average X =
P
Xi
n

is a random variable.
In general, any function of n i.i.d. random variables is a random variable, and called a sampling statistic
that follows a sampling distribution.

Theorem 1. (Central Limit Theorem) For X1; : : : ; Xn i.i.d. f (x; „), E(X); V (x) <∞, then X−—
ff=

√
n
→ N(0; 1)

converges in distribution for sufficiently large n.

Proof. Proof with moment generating functions.

Example 3. In the Cauchy distribution, this does not hold since it has infinite mean and variance.

Definition 6. The covariance Cov(X; Y ) = E[(X − —x)(Y − —Y )] = E(XY ) − E(X)E(Y ). Covariance
quantifies the relationship between two variables, i.e. how much one varies with the other. The correlation
Corr(X; Y ) = Cov(X;Y )√

V (X)V (Y )
.

• Covariance is an inner product, variance is norm.

• V (X + Y ) = V (X) + V (Y ) + 2Cov(X; Y ).

• If X ⊥ Y , V (X + Y ) = V (X) + V (Y ).

• In general, V (
P

i Xi ) =
P

i V (Xi ) + 2
P

i<j Cov(Xi ; Xj).

These will be useful in regression, where we try to identify relationships between r.v.s.

Definitions in statistics

In probability, we are given a mathematical model to work with. In statistics, we infer properties of a
mathematical model. The steps of data analysis are: state the problem, identify what data is needed, decide
on a model and collect data, clean data, estimate parameters of the model, and carry out appropriate tests,
draw conclusions.

Introduction to Regression
Definition 7. The corelation coefficient

ȷX;Y =

P
i (xi − x)(yi − y)pP

i (xi − x)2
pP

i (yi − y)2
=

Cov(X; Y )

sxsy

The above value is somewhat like the cos(„) between the vectors X; Y ; recall dot product. When we discuss
corelation, we talk about linear relations only; the linear association between X; Y . We can see this by con-
sidering X and Y = X2. Corelation is symmetric, it does not indicate the direction of the symmetry (which
causes which/causation). Corelation only says the influence on the change of one variable when the other
changes; think about moving along non-orthogonal vectors and projecting.

Galton investigated the effect of fathers heights on their sons height. Galton termed regression as a ‘regres-
sion’ of heights towards the mean; on average, heights of sons move towards the mean, so the average height
across generations is the same.

In a linear regression, we assume there is a linear relation Y = ˛0 + ˛1X + " between the random variables
X; Y where " is an error random variable. The deviation not captured by linearity is incorporated to ". Given
two values of X, it is not guaranteed that the value of Y is the same. But for a unique X we get unique
average Y . We want E(Y | X = x) = ˛0 + ˛1X; the relationship between the mean of Y and a specific
value of X is linear. Note E(") = 0. We call X the explanatory, predictor, independent variable and Y as
the response, outcome, dependent variable. Suppose we are given paired data (x1; y1); : : : ; (xn; yn). We
try to fit a linear regression to model the relationship between X and Y :

Y = ˛0 + ˛1X + " and want E(Y | X = x) = ˛0 + ˛1X
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The values of ˛0; ˛1 are not yet known and need to be estimated. In the sample, the error ei replaces "i . The
line best predicting Y as X changes should minimize the squares of the errors ei = yi− ŷi where ŷi = b0+b1xi
where b0; b1 are the intercept and slope of the regression line. We minimize the squares

P
i e

2
i . The ei are

referred to as residuals; minimize residual sums squared. Note

RSS(b0; b1) =
X
i

e2i =
nX
i=1

(yi − ŷi )
2 =

nX
i=1

(yi − b0 − b1xi )
2

Aside: What value of a minimizes (1)
P

|xi − a|, and which minimizes (2)
P

(xi − a)2? Answer: (1)
a = Med(X), (2) a = x . We do not minimize the sum of the residuals, since this must always be 0. We
minimize the RSS with respect to b0; b1.

@RSS

@b0
= −2

X
i

(yi − b0 − b1xi );
@RSS

@b1
= −2

X
i

xi (yi − b0 − b1xi )

so setting these to 0, we get the normal equationsX
i

yi = b0n + b1
X
i

xi ;
X
i

xiyi = b0
X
i

xi + b1
X
i

x2i

Solving these, we get

ˆ̨
0 = b0 = y − ˆ̨

1x; ˆ̨
1 = b1 =

P
i xiyi − nxyP
x2i − nx2

=

P
(xi − x)(yi − y)P

(xi − x)2
=
SX;Y
SX

The intercept is the average value of the response when X = 0.

May 11: Lecture 2

Clarifying last class: ŷi is the conditional mean of yi . When this is true, then
P

i ei = 0. That is, we
estimate ŷi so that

P
i ei = 0.

Regression continued
We continue discussing linear regression; fitting a linear relation assuming it exists. The aim is to infer the
true values of ˛0; ˛1 by inspecting their sampling distributions. We also make some assumptions regarding
the error terms; the properties of their distributions (" is r.v.).

Assumption: Linearity

The conditional mean of Y | X = x is linear with respect to X. However, the relationship E(Y | X) and X
does not have to be linear, but the linearity assumption is linearity in the parameters.Our relationship must
be realistic given the context; introducing linearity may produce unrealistic relationships.

R simulation: When generating random dataset, we set a seed so our results are reproducible. Always start
with a seed in assignments. Note the Y variable is the transformation ˛0 + ˛1 logX + ". Introducing linear
relationship between X and Y is inaccurate. It is linear in the parameters ˛0; ˛1 however.

Qs: Chaos in random number generation? Look up random number generation algorithms. How do we
quantify linearity in a data set? Mostly with plots but is there better way?

Assumption: Independence

The errors "i are independent. That is, the deviations from the mean are not related; they are i.i.d. r.v.
This reduces predictive capibilities in some areas, but we can relax this assumption later (generalized least
squares).
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Assumption: Homoscedasticity (equal variance)

The error variance does not change depending on X. That is V (" | X = x) = ff2 and is independent of x . In
the R codes, we see that variance of errors increases with X, which decreases predictive power as X increases.
Moreover, this implies some of the variation in the errors is explained by X, which violates our assumption.
Variance cannot depend of X. " ⊥ X. This is relaxed in GLS.

In multiple linear regression, we talk about the Gauss-Markov assumption, but we need to make some as-
sumptions about how "i is distributed in order to make inferences.

Assumption: Normality

" ∼ N(0; ff2). The previous assumptions are required to obtain the least squares estimates, but normality is
not required. Under this assumption, we can make confidence intervals and tests, and have nice properties
following from normal distribution.

There are more assumpitons in general, but these are most important.

More about variance of "

We have estimated ˛0, ˛1 using least squares. However, we have another parameter to estimate; V (") = ff2.
V (") = E("2) = ff2. We take the average of e2i using this, since we want summary measure. The mean

residual squared (MRS) can be calculated as s2 =

P
i e

2
i

n − 2
. We show this estimator of E("2) is unbiased as

homework; prove this!.

Inferences about the regression model

Conditional expectation and variance of ˆ̨
1

Recall ˛1 =
P

(xi − x)(yi − y)P
(xi − x)2

Proposition 3.
P

(xi − x)(yi − y) =
P

i (xi − x)yi

Proof. X
(xi − x)(yi − y) =

X
(xiyi − xyi − yxi + xy)

=
X

(xiyi − xyi )− nyx + nxy

=
X

(xi − x)yi

A symmetric sum can be established for
P

i (yi − y)xi . However, the above is needed to simplify conditional
expectation calculations. We may also show

P
(xi − x)xi =

P
(xi − x)2. The idea of both of these proof is

making the substitution nx =
P
xi .

Proposition 4.
P

(xi − x)xi =
P

(xi − x)2

Proof. X
(xi − x)xi =

X
(x2i − xxi )

=
X

(x2i − 2xxi ) + nx2

=
X

(xi − x)2

6
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Other way of writing:
P

(xix)
2 =

P
x2i − nx2. Now, we calculate conditional expectation of ˆ̨

1

E( ˆ̨1 | X = xi ) = E

„P
(xi − x)yiP
(xi − x2)

| X = xi

«
=

P
(xi − x)E(Yi | X = xi )P

(xi − x)2

Substituting E(Yi | Xi = x) = ˛0 + ˛1x , then

E( ˆ̨1 | X = xi ) =

P
i (xi − x)˛0P
(xi − x)2

+

P
i (xi − x)˛1xiP
(xi − x)2

=
˛1
P

i (xi − x)2P
(xi − x)2

= ˛1

Since
P

(xi−x) =
P
xi−nx = 0 and by above prop.,

P
i (xi−x)xi =

P
(xi−x)2. Therefore ˆ̨

1 does not depend
on X, and has expected value of ˛1; it is an unbiased estimator of ˛1. That is, E( ˆ̨1 | X = xi ) = E( ˆ̨1) = ˛1.
Next, we may calculate V ( ˆ̨1). First, V (Yi | X = xi ) = ff2, that is, the variance of the error.

V ( ˆ̨1 | X = xi ) =

„P
(xi − x)yiP
(xi − x2)

| X = xi

«
=

P
i (xi − x)2V (Yi | X = xi )

(
P

i (xi − x)2)2
=

ff2P
(xi − x)2

=
ff2

SX;X

Inferences for variance of ˆ̨
1

Since "i ∼ N(0; ff2), then Yi | X ∼ N(˛0 + ˛1X; ff
2). Letting ci =

P
(xi−x)P
(xi−x)2 then ˆ̨

1 =
P
ciyi . Observe that

this is a linear combination of normally distributed random variables, so ˆ̨
1 is normally distributed! Thus

ˆ̨
1 | X = xi ∼ N

„
˛1;

ff2

SX;X

«
We can construct a 1 − ¸ confidence interval for ˛1 which has extremes ˆ̨

1 ± Z1−¸=2
ffp
SX;X

. When ff2

is unknown, we construct a t-confidence using S2 =

P
e2i

n − 2
. We therefore make a confidence interval with

critical values
ˆ̨
1 ± t1−¸=2;n−2

s2p
SX;X

Note our assumption of normality of errors.

Clarification SX;X =
P

(xi − x)2 and SX;Y =
P

(xi − x)(yi − y).

Recall, the p-value can be calculated as p = P(Z ≥ |z |) or p = P(T ≥ |t|) where z; t are the calculated
test statistics. The p-value is the probability of obtaining a sample that provides strong evidence against
the hypothesized value of H0 : ˛1, set by threshold ¸. ¸ is the probability of making a type one error with
repeated sampling.

Example 4.
P
xi = 4035;

P
yi = 4041;

P
e2i = 4753:125;

P
x2i = 1005535;

P
xiyi = 864910; t0:975;18 =

2:10.
We need to calculate ˆ̨

1; s; SX;X from this information; recall ˆ̨
1 ± t1−¸=2;n−2

sp
SX;X

. The interval becomes

(0:18121; 0:33728). Verify as homework.

Properties of ˛0

The conditional expectation of ˛0 | X. Since ˆ̨
0 = y − ˆ̨

1x . Using this,

E( ˆ̨0 | X = xi ) =

P
E(yi | X = xi )

n
− ˛1x =

„
n˛0 + n˛1x

n

«
− ˛1x = ˛0

Therefore ˆ̨
0 is an unbiased estimator of ˛0. Now for the variance, (minor abuse of notation)

V ( ˆ̨0 | X = xi ) = V (oly − ˆ̨
1x | X = xi ) = V (y | xi ) + x2V ( ˆ̨1 | xi )− 2xCov(y; ˆ̨1 | xi )

Calculating each term separately,

V (y | X = xi ) = V

„P
yi
n

| X = xi

«
=

P
ff2

n2
=
ff2

n

7
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To calculate covariance term, we use substitutions involving ˆ̨
1 =

P
ciyi with ci defined before

Cov(y; ˆ̨1 | X = xi ) = Cov

„P
i yi
n

;
X

ciyi | X = xi

«
=

1

n

X
i

Cov(yi ; ciyi | X = xi )

Recall Cov(X; aY ) = aCov(X; Y ). Also, given a particular xi , ci is a constant.

=
1

n

X
i

ciCov(yi ; yi | X = xi ) =
1

n

X
i

ciV (yi | X = xi ) =
1

n

X
i

ciff
2 = 0

From last section, V ( ˆ̨1 | xi ) = x2 ff2

SX;X
. Therefore

V ( ˆ̨0 | X = xi ) = ff2
„
1

n
+

x2

SX;X

«
; and ˆ̨

0 | X = xi ∼ N

„
˛0; ff

2

„
1

n
+

x2

SX;X

««
Therefore the (1− ¸) confidence for ˛0 is

ˆ̨
0 ± Z1−¸=2ff

s
1

n
+

x2

SX;X

(fill in when ff2 is unknown )

Confidence interval for the regression line

Denote x∗; y∗ as an observation not currently in the sample. We use the model built with the current
observations to see how far y∗ observation can vary. It can easily be shown that

E(ŷ∗ | X = x∗) = ˛0 + ˛1x
∗

Where X = x∗ new observation, y∗ unknown. As well, ŷ∗ is the predicted value of y∗ paired with x∗. Often,
we are interested in calculating the variance of E(Y | X = x∗) = ŷ∗ | X = x∗ and confidence interval for
E(Y | X = x∗). That is, calculating the variance and confidence of the regression line at each point. Note
E(ŷ∗ | X = x∗) = ˛0 + ˛1x

∗ = E(Y | X = x∗) implies the sample regression is an unbiased estimator of the
true Linear relationship between X; Y . The variance can be calculated as

V (ŷ∗ | X = x∗) = V ( ˆ̨0 + ˆ̨
1x

∗) = V (−y + ˆ̨
1(x

∗ − x))

= V (y) + (x∗ − x)2V ( ˆ̨1) =
ff2

n
+
ff2(x∗ − x)2

SX;X

= ff2
„
1

n
+

(x∗ − x)2

SX;X

«
This is interpreted as the variance of the true location of the regression line at X = x∗. Note variance
increases quadratically as x∗ moves further from x .

Prediction error and interval

Assuming we fit a regression line between X; Y with some sample. If a new data point X = x∗ is given, our
predicted ŷ∗ lies exactly on the line in the model we have fitted, but y∗ associated with x∗ may deviate from
the line. How much does this y vary? y∗ − ŷ∗ is called the prediction error for X = x∗. We calculate its
expectation and variance.

For expectation, the ∗ is redundant, so we write E(y − ŷ | X = x∗). We can easily show this is 0 since
y − ŷ = 0. Therefore

V (y∗ − ŷ∗ | X = x∗) = V (y − ŷ | X = x∗) = ff2
„
1 +

1

n
+

(x∗ − x)2

SX;X

«
We just add the variance of y and variance of ŷ by expansion of variance and since Cov(ŷ ; y) = 0. The
observation y is independent of the previous sample by assumption. The prediction interval is built in the

8
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same way as before using t distribution. The prediction interval is how much we expect the true value to
deviate from the regression line.
R simulation:
The confidence interval is for the regression line. The prediction interval is for a new predicted value given
x∗; how far y∗ can deviate from the predicted ŷ∗.

Example 5. Calculate summary measures for the production data (in slides hw)

May 16: Lecture 3

Clarification In the derivations from last class, we used

Cov

„P
Yi
n

;
X

ciyi | X = xi

«
=

1

n

X
Cov(yi ; ciyi | X = xi )

since Cov(Yi ; Yj) = 0 by independence of Yi ; Yj .

Understand theory and problem solving procedure for midterms. Data analysis will mostly be with R.

Assignment Task 1

The purpose of the assignment is using R for inference of parameters given simulated data. Use your student
id as a seed. After data is generated, run the LM model. Repeating this procedure, get sampling distribution
for ˆ̨

i ; ff
2, and compare these to true variances.

Analysis of variance (ANOVA)
So far we have discussed inference about specific parameters, and hypothesis testing for their true values.
For example, if we fail to reject H0 : ˛1 = 0, then there is no linear relationship between X; Y . In this case,
Y = ˛0 + ", V (Y ) = V (") = ff2, so " explains all the variance of Y . Usually, V (Y ) = ˛2

1V (X) + ff2, since
X ⊥ ". Therefore when the above holds, part of the variance is given by V (X). If most of the variation in Y
is explained by X, then predictions are very accurate. We discuss this in ANOVA.

In the slides, points that are less scattered about the regression line have more of their variance explained by X.

As the residual variance ff2 increases, the variation of Y is less explained by X. This increases prediction
error. We want to answer how well the regression line might explain the variation we observe in the responses.
ANOVA is another way of testing the significance of the regression line. The total varation of Y is explained
by the total sum of squares, the numerator of sY

SST =
X

(yi − y)2

This can be decomposed byX
(yi − y)2 =

X
(yi − ŷi + ŷi − y)2 =

X
(yi − ŷi )

2 +
X

(ŷi − y)2 + 2
X

(yi − ŷi )(ŷi − y)

Where the third term becomesX
(yi − ŷi )(ŷi − y) =

X
(ŷi (yi − ŷi )− y(yi − ŷi )) =

X
ŷiei − y

X
ei = 0

Since
P
ei = 0 and

P
xiei = 0 by the second normal equation, which gives

P
ŷiei = 0. Hint:

P
(˛0 +

˛1xi )ei = ˛0
P
ei + ˛1

P
xiei . Therefore the total variation of Y can be divided intoX

(yi − y)2 =
X

(yi − ŷi )
2 +

X
(ŷi − y)2

The term on the left is the residual sum square, (n − 2)s2. The second term explains the variance in ŷi ,
or the variation in fitted values from the regression. We may easily show

P ŷi
n

= y . The second term on
the right is the regression sum squared. The total variation in Y has been decomposed to come from the
regression line, and from random errors.

9
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Degrees of Freedom. This is the number of summed square normals. The proof for (n−1)s2

ff2 ∼ ffl2
n−1 shows

where one of the ‘standard normal squares’ are lost. (s2 is sample variance). For each parameter we fix, we
lose a degree of freedom. When y is fixed, we are free to have n − 1 values, and are forced to choose one
to get the fixed y . That is, yn, the n-th observation is fixed for a fixed y . This is why sample variance,P

(yi − y)2=n − 1, uses n − 1 degrees of freedom.

In the above SST, the RSS
P

(yi − ŷi )2 has n−2 degrees of freedom since ŷi = ˆ̨
0+ ˆ̨

1xi uses two estimated
parameters. Since

P
(yi − y)2 has n− 1 degrees of freedom, then the SSreg

P
(ŷi − y)2 must have 1 degree

of freedom. This follows since the sum depends only on ˛1 given fixed xi :X
(ŷi − y)2 =

X
( ˆ̨0 + ˆ̨

1xi − y2) =
X

(y − ˆ̨
1x + ˆ̨

1xi − y2) =
X

ˆ̨2
1(xi − x)2

We need degrees of freedom in order to test hypothesis. We will later show

SSreg
ff2

∼ ffl2
1;
RSS

ff2
∼ ffl2

n−2

Under H0 : ˛0 = 0 then F0 ∼ F1;n−2. We want SSreg as close to the SST as possible. The F-test here
detects how close SSreg is to TSS. The closer it is the bigger the value of F0. We can show t2n−2 = F1;n−2.
We can also show

E(SSreg ) = ff2 + SX;X˛
2
1

So when ˛1 = 0, the regression sum squared have variance equal to ff2. Below is an ANOVA table:

Sources of Variation Df Sum Sq Mean Sq F value Pr(>F)
Regression 1 SSreg MSreg =

SSreg
1 F0 =

MSreg
MRSS

etc
Residuals n-2 RSS MRSSreg = RSS

n−2

Total n-1 SST

In general, the F-test measures whether the means of two groups measure significantly. The F statistic is the
ratio of explained variance (regression model attributes to V (X)) to unexplained variance (variance of ei ).
Under the null, our data reflects the intercept only model Y = ˛0 + ", and we test the departure from this.

The Coefficient of Determination

Another measure to assess whether the regression line explains enough of the variability in the response is the
coefficient of determination, R2. This gives the proportion of the total sample variability in the response
that has been explained by the regression model.

R2 =
SSreg
SST

or 1− R2 =
RSS

SST

Note 0 ≤ R2 ≤ 1. If R2 is close to 1, it is an important predictor of Y . If it is close to 0, then it offers little
predictive power for Y . In simple linear regression, ȷ2 = R2 where ȷ is Pearson corelation coefficient.

Categorical predictors

So far we have required X to be continuous. However, X could be categorical. (X smoking status vs. Y
blood pressure). Here the predictor is binary and the output is continuous. How would we test if the mean
blood pressure varies between these groups?

We did this in STA261 with a two-sample t-test, and by homoescadicity we do one with equal variance. We
may also use regression, by using dummy variables which are indicator variables. Setting 0 for non-smokers,
1 for smokers,

E(Y | X = 0) = ˛0; E(Y | X = 1) = ˛0 + ˛1

Using ANOVA this is essentially a t-test. F1;n−2 ∼ t2n−1 so by squaring the t statistic we get F statistic; a
significant F statistic indicate the change in means given by ˛1 is significant. Therefore using hypothesis test
with ANOVA for ˛1 = 0, we get a test for differing means.

The ‘slope’ becomes the change in average. We can say ˛1 reflects the average difference between two groups.
The slope provides the magnitude of the difference, while the hypothesis test tells us whether the difference

10
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is statistically significant.

With categorical variables, R2 may be low but the test will give significance.

Multiple Linear Regression
So far we have only had one predictor X, but we generalize to X1; : : : ; Xn. That is

Y = ˛0 + ˛1X1 + : : :+ ˛pXp + "

This implies Y is related to X1; : : : Xp linearly. However, the predictor produces a p-dimensional subspace
instead of a line. See image in ‘Elements of Statistical Learning 2e’; with Y regressed on X1; X2 we get a
regression plane.

The conditional mean of Y is given by E(Y | X1; : : : ; Xp) = ˛0+˛1X1+ : : :+˛pXp. For the sample dataset,

yi = ˛0 + ˛1xi ;1 + : : :+ ˛pxp;1 + ei

So we minimize RSS(˛0; : : : ; ˛p) =
P

(yi −
Pp

˛jxi j)
2. Differentiating with respect to each ˛j ,

@RSS

@˛0
=
X

−2(yi −
pX
˛jxi j)

@RSS

@˛j

X
−2(yi −

pX
˛jxi j)xi j

Setting these to 0, we get p+1 normal equations in p+1 unknowns, giving us a unique solution and therefore
minimum, since it is the minimum for each ˛j .

Matrix Notation

In order to simplify notation we use matrices. For this we write

Y = X˛ + "

Y is an n× 1 vector, X is an n× (p + 1) matrix, with the first column being a vector of 1s. ˛ is (p + 1)× 1
vector, " is n × 1 vector.

We denote the transpose of matrix A as A′. If A is a square matrix with A = A′ then it is symmetric
(corrseponds to self adjoint operator). If A is invertible, we denote its inverse with A−1. A matrix is
orthogonal if A−1 = A′; column vectors are orthogonal. An idempotent matrix satisfies A2 = A. Some
important properties are that

(A+ B)′ = A′ + B′ and (AB)′ = B′A′

Example 6. The projection matrix P : Rn → Rn of rank p ≤ n onto a subspace is a square matrix that is
symmetric and idempotent.

May 18: Lecture 4

More properties
Definition 8. If Y = (Y1; : : : ; Yn) is a random vector, then E(Y ) = (E(Y1); : : : ; E(Yn)). The covariance
matrix of Y is denoted

V (Y ) =

0BBB@
V (Y1) Cov(Y1; Y2) : : : Cov(Y1; Yn)

Cov(Y2; Y1) V (Y2) : : : Cov(Y2; Yn)
...

. . .
...

Cov(Yn; Y1) Cov(Yn; Y2) : : : V (Yn)

1CCCA
That is each entry ai ;j = Cov(Yi ; Yj). It is created by Cov{(Y − E(Y ))(Y − E(Y ))′}, the outer product.

Proposition 5. If A is a constant matrix, X a random vector, then E(AX) = AE(X)

Proposition 6. If b is a constant vector, Y a random vector, then V (b′Y ) = b′V (Y )b.

11
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Multiple Linear Regression Continued
Above, we wrote Y = X˛ + ", that is yi = ˛0 + ˛1xi ;1 + : : :+ ˛pxi ;p + "i in matrix form. Explicitly,0BBB@

y1
y2
...
yn

1CCCA =

0BBB@
1 x1;1 x1;2 : : : x1;p
1 x2;1 x2;2 : : : x2;p
...

. . .
...

1 xn;1 xn;2 : : : xn;p

1CCCA
0BBB@
˛0
˛1
...
˛p

1CCCA+

0BBB@
"1
"2
...
"n

1CCCA
Y; " ∈ Rn; ˛ ∈ Rp+1, and X is n × (p + 1) dimensional.

As before, we would like to minimize
Pn

i e
2
i given values in X. This evaluates to the scalar

RSS(˛) =
nX
i

e2i = e ′e = (Y − X˛)′(Y − X˛) = Y ′Y − 2Y ′X˛ + ˛′X ′X˛

Where Y ′X˛ = ˛′X ′Y since the transpose of a scalar is the same scalar. Note RSS : Rp+1 → R Differentiating
with respect to ˛,

@RSS

@˛
=

@

@˛
(Y ′Y − 2˛′X ′Y + ˛′X ′X˛) = −2X ′Y + 2X ′X˛

Setting this to 0, we see ˆ̨ = (X ′X)−1X ′Y . In the case of simple LR,

X =

0B@1 x1
...

...
1 xn

1CA ; Y =

0B@y1...
yn

1CA =⇒ X ′X =

„
n

P
xiP

xi
P
x2i

«
= n

„
1 x
x 1

n

P
x2i

«

We can compute detX ′X = n2 ·
„
1

n

P
x2i − x2

«
= n ·

P
(xi − x)2 = n · SX;X . Therefore

(X ′X)−1 =

0BB@
P
x2i

n · SX;X
− x

SX;X

− x

SX;X

1

SX;X

1CCA
Multiplying by ff2, we see this is the covariance matrix for ˆ̨

0; ˆ̨1; Cov( ˆ̨0; ˆ̨1) =
−ff2x
SX;X

. Important for

midterm!

Definition 9. The projection of Y on X is given by Ŷ = X ˆ̨ = X(X ′X)−1X ′Y = HY . We call H the hat
or projection matrix. Note it is n × n, idempotent, and symmetric!

We let e = Y − Ŷ = Y − X(X ′X)−1X ′Y = (I −H)Y

Proposition 7. H and I −H are both idempotent.

Note that HX = X; this is easily checked by tracing definition and cancelling inverses. We can partition the
first k and last p + 1− k columns of X into matrix [X1; X2]. Then HX = [HX1; HX2] = X = [X1; X2]. As
well, tr(H) = p + 1 and dim rangeH = p + 1.

Assumptions in Multiple LR

E(Y | X) = X · ˛. Linearity, independence, homoescadicity, normality hold as assumptions for our model
(same as before). We assume " ∼ N(0; ff2I). Then Y | X ∼ N(X˛; ff2I). Now we discuss the distribution of
ˆ̨.

E( ˆ̨ | X) = E((X ′X)−1X ′Y | X) = (X ′X)−1X ′X˛ = ˛

so the estimator is consistent. For the variance, we carry out adjoints as in previous property

V ( ˆ̨ | X) = V ((X ′X)−1X ′Y | X) = (X ′X)−1X ′ff2IX(X ′X)−1 = (X ′X)−1ff2

12
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This is just the covariance matrix of ˆ̨! Look back to our example above. That is

C = (X ′X)−1 =⇒ ci j = ff2Cov(˛i ; ˛j)

Least squares estimates are the best linear unbiased estimators according to the Gauss-Markov Theorem
(which is stated later). The following assumptions are required for the theorem: (1) the errors "i are inde-
pendent, (2) E(") = 0, (3) V (") = ff2. Note normality is not assumed.

As in simple LR, the ˆ̨
j are normally distributed; ˆ̨

j ∼ N(˛j ; ff
2cj;j). We can test hypotheses for ˛j in the

usual way. Given HO : ˛0
j , then we can calculate Z =

ˆ̨
j−˛0

j√
cj;jff

and use a z-test.

May 30: Lecture 5

Term Test

Higher than expected. Expect lots of multiple linear regression questions in the final, like Question 5 on TT.
Practice from Chapter 3 in Montgomery.

ANOVA for Multiple Linear Regression

Expectation of RSS, sample variance

The RSS for MLR is
P

(yi − ŷi ) = e ′e. Recall e = (I − H)y since Y − Ŷ = Y − HY = (I − H)Y , where
H = X(X ′X)−1X ′. Therefore

RSS = y ′[I − X(X ′X)−1X ′]y = y ′[I −H]y

In MLR, we have p + 1 parameters to estimate so reasoning with degrees of freedom, the sample variance

s2 =
RSS

n − p − 1
=

P
e2i

n − p − 1
. We show this by first calculating expectation of RSS by proving a theorem,

and substituting A = I −H. Please see last lecture for properties of expectation and variance.

Theorem 2. If y is n× 1 random vector, with mean vector — and covariance matrix V , and A is a matrix
of constants, then

E(y ′Ay) = tr(AV ) + —′A—

Proof. We multiply and use linearity of expectation, expansion of covariance

E(RSS) = E[Y ′AY ] = E

0@ nX
i

nX
j

ai ;jyiyj

1A =
nX
i

nX
j

ai ;jE (yiyj)

Expanding with covariance, and with (ffi ;j) = Cov(Y ) = V

=
nX
i

nX
j

ai ;j (Cov(yi ; yj) + E(yi )E(yj)) =
nX
i

nX
j

ai ;jffi ;j +
nX
i

nX
j

ai ;j—i—j

= tr(AV ) + —′A—

Proposition 8. E(RSS) = (n − p − 1)ff2 + —′A— where A = I −H

Proof. Using the above, Set A = I −H; V = ff2I, then

tr(AV ) = tr[(I −H)ff2I] = ff2tr(I −H)

Expanding, tr(I − H) = tr(In) − tr(H) = n − p − 1; where tr(H) = tr(X(X ′X)−1X ′) = tr(X ′X(X ′X)−1) =
trIp+1 = p + 1 since (X ′X)−1 is (p + 1)× (p + 1).

This will be on the final!

13
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Proposition 9. —′A— = 0, where A = I −H, — = X˛.

Proof.

—′A— = (X˛)′(I − X(X ′X)−1X ′)X˛ = ˛′X ′X˛ − ˛′X ′X(X ′X)−1X ′X˛

= ˛′X ′X˛ − ˛′X ′X ′˛

= 0

Proposition 10. E(RSS) = (n − p − 1)ff2

This follows from substitution into the past 3 statements. The following proposition also easily follows.

Proposition 11. E(MRSS) = E( RSS
n−p−1 ) = ff2

RSS and SSreg for Multiple LR

By Gauss-Markov assumptions, "i ∼ N(0; ff2), and so "i
ff
∼ N(0; 1) by Z-score. Also this gives 1

ff
" ∼ N(0; I).

Note 1

e = Y − X ˆ̨ = Y −HY = AY

Our underlying model is assumed to be Y = X˛ + ", so therefore Ay = AX˛ + A". Expanding and since
HX = X, AX˛ = (I − H)X˛ = 0 so e = Ay = A". That is our observed errors are the difference " − H";
the error vector minus its projection. This proves the following fact

Fact 1. e = (I −H)".

We also showed A = I −H is symmetric and idempotent; this implies

A′A = A2 = A

Then
RSS = (y − ŷ)′(y − ŷ) = e ′e = "′A′A" = "A" = ff2Z′AZ

This implies
RSS

ff2
= Z′AZ.

Theorem 3. If A is a symmetric and idempotent n × n matrix and Z ∼ N(0; I), then Z′AZ ∼ ffl2(tr(A))

No proof, try it yourself for practice. However, notice Z′Z ∼ ffl2(n) and use a nice basis for a projection
operator. Recall A = I −H so this gives

RSS

ff2
∼ ffl2(tr(A)) = ffl2(n − p − 1)

Proposition 12. y = (1′1)−11′y .

Therefore we may rewrite the regression sum of squares involving y and H.

Proposition 13. SSreg = y ′[H − 1(1′1)−11′]y

Proof. First, write

SSreg = [ŷ − 1y ]′[ŷ − 1y ] = y ′[H − 1(1′1)−11]′[H − 1(1′1)−11′]y

Now we show [H − 1(1′1)−11]′[H − 1(1′1)−11′] = H − 1(1′1)−11′. Expanding,

[H − 1(1′1)−11′]′[H − 1(1′1)−11′] = H2 − 1(1′1)−11′H −H1(1′1)−11′ + 1(1′1)−11′1(1′1)−11′

Note since HX = X and 1 is a column in X, then H · 1 = 1, and taking transposes a similar result holds.

= H − 1(1′1)−11′ − 1(1′1)−11′ + 1(1′1)−11′

= H − 1(1′1)−11′

1The slides use Q = I −H, but we use A as before.

14
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This gives us a way to express the regression sum squared using y;H and a constant matrix. We use this to
show that the regression sum squared, and residual sum squared from above are independent.

Proposition 14. The regression sum of squares SSreg = y ′[H − 1(1′1)−11′]y and residual sum of squares
RSS = y ′[I −H]y are independent.

We do this by computing [H − 1(1′1)−11′]ff2I[I − X(X ′X)−1X ′] = ff2(H − B)(I −H) = 0 as an exercise.

ANOVA Table for MLR

Sources of Variation Df Sum Sq Mean Sq F value Pr(>F)
Regression p SSreg MSreg =

SSreg
p

F0 =
MSreg
MRSS

etc
Residuals n − p − 1 RSS MRSSreg = RSS

n−p−1

Total n − 1 SST

By independence, and since SSreg ∼ ffl2(p), RSS ∼ ffl2(n − p − 1), then we have

SSreg=p

RSS=n − p − 1
∼ F (p; n − p − 1)

We may perform an F test with the null hypothesis

H0 : ˛0 = ˛1 = : : : = ˛p = 0 and H1 : ˛i ̸= 0 for some i

Significance in the statistic gives evidence for at least one predictor being valid; at least some Xi explains a
significant proportion of the variance in Y .

Recall that the coefficient of determination R2 =
SSreg
SST

. As the number of variables increases, so does R2,
since more predictors decrease RSS.

RSS =
X

(yi − ˛0 − ˛1xi − : : :− ˛pxp)
2

where an additional predictor will decrease each term in the sum. Note when we have n predictors for the
sample size, we have a perfect fit and R2 = 1. Geometrically, projection plane induced by H = X(X ′X)−1X ′

is the whole space. In short, we get many predictors but none of them good and we overfit. We account for
the number of predictors using an adjusted R2

R2
adj = 1− RSS=n − p − 1

SST=n − 1

The interpretation is exactly the same, but is a more robust statistic in multiple linear regression due to the
previous issues.

Partial F-test
One of the most important tests in an MLR is the partial F-test. In ANOVA we do a test for the full model; we
identify whether there is any significant predictor. The partial F-test identifies whether a subset of predictors
still significantly predicts the response. However, the null hypothesis is that the reduced model is better
than the full model. Remember that we consider the ratio of the error sum squared; a significant increase in
errors after removing predictors indicates a worse model, and larger F -statistic.

Suppose we have two models. The full Y = ˛0+˛1X1+: : :+˛pXp+". We test whether the model still explains
the response when we remove the first k predictors; we consider the reduced Y = ˛k+1Xk+1+ : : :+˛pXp+".
First, write

RSS(reduced)− RSS(full) = y ′[H −H1]y

Without proof, but similar to for RSS before,

RSS(˛2 | ˛1)=ff2 = (RSS(reduced)− RSS(full))=ff2 ∼ ffl2(k)
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Thus
RSS(˛2 | ˛1)=ff2

RSS(full)=n − p − 1
∼ F (k; n − p − 1)

We test
H0 : reduced model is better fit; H1 : full model is better fit

A large F value suggests that the reduced model explains much less variability than the full model, and fits
the data worse. This implies we should be rejecting the null, so predictors cannot be removed from the model.
Small values imply that both reduced and full models explain a similar amount of variability, so the additional
predictors may not be necessary.

Opposite test hypotheses occur, since we test ratios of residuals; high ratio means large residuals in reduced
model.

Diagnostic checking
The three assumptions of linear regression are (1) linearity, (2) homoscedasticity, (3) independence of the
errors, with normality also being one. One of the most important tasks is checking the assumptions in
our data. This is called diagnostic checking. Anscombe’s datasets give an example of why checking these
assumptions is important; the models give the same predictors but differ greatly in their structure.

Suppose we fit Y = ˛0 + ˛1X + ". The fitted regression ŷ = ˆ̨
0 + ˆ̨

1X produces the estimate for E(Y | X).
e is an unbiased estimate for ". A good way to check is to plot the residuals, there should be no pattern and
should be a random scatter plot. We can also plot residuals against ŷ as in multiple LR. Assumptions hold
if there is no pattern. Other relationships, like a quadratic one, will become apparent in the residuals. The
following steps are best practice:

1. Assess model assumptions using residual plot. There should be no pattern.

2. Determine which data points have x-values with large effect on Y . (Leverage points.)

3. Determine which points are outliers in their responses.

4. Assess the influence of bad leverage points on the fitted model.

5. Examine whether constant error variance assumption is reasonable. (Do residuals vary with X?)

6. If data is collected over prolonged period of time, see if it is corelated with time.

7. For small sample size or prediction intervals, assess whether normality of errors is reasonable. (Normality
tests?)

If this is successful, then our assumptions are valid and our predictors can be trusted. If the assumptions fail,
our analysis is invalid.

June 1: Lecture 6

Leverage Points
Leverage points are observations that are highly influential on the fitted regression line. Leverage points
occur due to an a value of X = x far from x . The corresponding Y = y greatly influences the line for a given
X = x . Such a pair x; y that greatly changes the least square estimates is a bad leverage point. For extreme
x , if y is close to the fitted line it is a good leverage point, but if it is far it is a bad one. An outlier is an
observation that takes an extreme y value for an x that is not far from x .
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Numerical Summary

Recall
ˆ̨
0 = y − ˆ̨

1x ˆ̨
1 =

nX
j

xj − x

SX;X
yj =

nX
j

cjyj

Then

ŷi = ˆ̨
0 + ˆ̨

1xi = y + ˆ̨
1(xi − x) =

nX
j

„
yj
n
+

(xj − x)(xi − x)

SX;X
yj

«

=
nX
j

„
1

n
+

(xj − x)(xi − x)

SX;X

«
yj =

nX
j

hi ;jyj

This hi ;j is the entry in the hat matrix H. When i = j , then hi ;i =
1

n
+

(xi − x)2

SX;X
. We show

Pn
j hi ;j = 1.

Further, we can write ŷi = hi ;iyi +
P

j ̸=i hi ;jyj . If we have hi ;i ≈ 1, then ŷi is close to yi , and it is a leverage
point. It can also be shown mean(hi ;i ) = 2

n
(by definition). Using this, a popular way to identify a leverage

point is to check if hi ;i > 4
n
, or twice the mean. This is a useful rule of thumb.

Leverage is concerned with a single observation far from the rest of the data in the x-space. We have two
ways of dealing with bad leverage points. We can (1) remove the data point or (2) fit a different regression
model. A quadratic or logarithmic transformation of X may be needed.

Standardized Residuals and Influential Points
In the real world, often people work in sensitivity analysis. This is essentially identifying influential points,
which we discuss.

Residuals reflect the difference between observed and predicted response. We might want to use them to
measure the influence a leverage point will have on the estimated line. It turns out that the estimated residuals
do not always have the same variance; V (ei ) is not the same for all i . Actually, we find V (ei ) = ff2(1− hi ;i ).
We prove this.

Proposition 15.
Pn

j=1 h
2
i ;j = hi ;i

Proof.
nX
j=1

h2i ;j =
nX
j=1

„
1

n
+

(xj − x)(xi − x)

SX;X

«2

=
nX
j=1

 
1

n2
+

2

n

(xj − x)(xi − x)

SX;X
+

(xj − x)2(xi − x)2

S2
X;X

!

=
1

n
+

2

n

Pn
j=1(xj − x)(xi − x)

SX;X
+

Pn
j=1(xj − x)2(xi − x)2

S2
X;X

=
1

n
+

(xi − x)2

SX;X
= hi ;i

We use this in the last steps to prove the following.

Proposition 16. V (ei ) = ff2(1− hi ;i )

Proof.

V (ei ) = V
“
yi (1− hi ;i ) +

X
hi :jyj

”
= (1− hi ;i )

2V (yi ) +
X
i ̸=j

h2i ;jV (yj)

= ff2

0@(1− hi ;i )
2 +

X
i ̸=j

h2i ;j

1A = ff2

 
(1− hi ;i )

2 +
nX
i

h2i ;j − h2i ;i

!
= ff2

`
1− 2hi ;i + h2i ;i + hi ;i − h2i ;i

´
= ff2(1− hi ;i )
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We can now discuss the variation in each residual using our hat matrix. We see that the estimated residuals
are not actually independent, event though we assume that the errors are. If ei were independent, we would
expect V ar(ei ) = ff2. However, we have an extra term of −ff2hi ;i , which indicates the variance of a residual
depends on its distance from x . Residuals are correlated, but the correlation is small.

This makes it difficult to know whether the patterns we see are due to model violations or variance of the
residuals. To overcome this issue, we standardize the residuals by dividing by their standard error. By prop.
16,

se(ei ) = s
p
1− hi ;i =⇒ ri =

ei

s
p

1− hi ;i

Where s2 =
P
e2i

n − 2
. Note ri ∼ t(n−2), so these are also called ‘studentized’ residuals. If high leverage points

exist, it is more important to look at plots of standardized residuals; we can just check if ri ∈ [−2; 2] or [−4; 4].
It is expected that the variance of ri will be larger for center values of X, and smaller for remote values. Then
looking at the plot, we can identify whether a residual corresponds to an outlier; we plot standardizes residual
against dependent variable.

Example 7. In our Treasury Bond example, we identify three bad leverage points by plotting studentized
residual against dependent variable. Viewing these in detail, we find that they are ‘flower bonds’, so we remove
them from the analysis. The remaining points are more or less linear, but a slight bend may give evidence
that it is a logarithmic relationship.

Cook’s Distance
How can we quantify the influence a small number of observations on the regression line with a single statistic?
In 1977, Cook provided the following expression to calculate the influence of a single point on the regression
line.

Definition 10. The Cook’s distance for (xi ; yi ) is given by

Di =
(ŷj(i) − ŷj)

2

2s2
=
r2i
2

· hi
1− hi

where the subscript i references the predicted value from a model fit without (xi ; yi ). Thus ŷj(i) denotes the
jth fitted value based on the fit when the ith observation is deleted from the fit.

A high Cook’s distance means the model is a bad fit for the i-th observation, since there is a large residual
or it sits far from the centre of the predictors. There are similar metrics in MLR which we discuss later.
The second expression is easier to work with since it does not require refitting of any models. Large Cook’s

distance means large ri or large hi ;i . We use the cutoff Di >
4

n − 2
as a rough cutoff guideline, but identifying

unusual Di is most important.

Example 8. In the previous Treasury Bond example, the 3 unusual observations have a very high Cook’s
distance when plotted, and are valid to be removed.

Normality of the Errors
We need to assume "i is normally distributed to perform F , t, and Z tests, as well as construct confidence
intervals. We will verify the normality assumption using residual plots. First, we can show

P
hi ;j = 1 andP

xjhi ;j = xi ,

Proposition 17. ei = "i −
Pn

j hi ;j"j

Proof.

ei = yi − ŷi = yi −
nX
j

hi ;jyj = ˛0 + ˛1xi + "i −
nX
j

hi ;j(˛0 + ˛1xj + "j) = "i −
nX
j

hi ;j"j
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In small sample sizes, the second term may dominate, and the residuals may look normal even if the "i are
not. As n increases, the second term in the last equation has a smaller variance than the first term, so the
first term dominates the last equation. For large samples, the residuals can be used to assess normality of the
samples.

A common way to assess normality is via a QQ-plot; the studentized errors are plotted against their quantiles.
If the quantiles match that of a normal distribution, the plot is close to the y = x line, and the normality
assumption is valid. We must also check that the constant variance assumption is met; we cannot use
inferential tools if it is not true.

Variance stabilizing transformations
In the slides example, constant variances is violated. For inference, our prediction intervals depend on X. A
transformation of Y can stabilize the variance: make it not depend on X.

When we are counting events, as in the Slide 28 example, we typically fit a Poisson distribution. In a Pois-
son distribution, the mean and variance are both –. Since in regression we model the conditional mean
E(Y | X) = –X , we have also a conditional variance: –X changes by X, so should the variance. The square
root transformation can help in this situation.

Taking the function of a random variable, f (Y ) ≈ f (E(Y )) + f ′(E(Y ))(Y − E(Y )). Taking the variance, we
get

V (f (Y )) = (f ′(E(Y ))
2
V (Y )

since E(Y ) is a constant, and using variance properties. This way of approximating variance is called the
delta method. In the Poisson example, E(Y | X) = V (Y | X) = –(x). Letting f (Y ) =

p
(Y ), then

V (Y 0:5 | X) =
`
0:5E(Y | X)−0:5

´2
V (Y | X) =

„
1

2

«2

–(x)−1–(x) =
1

4

which makes V (f (Y ) | X) constant. In the example, X; Y are both counts, so we perform the square root
transformation on both and keep the same units. The variance stabilizing transformation stabilizes prediction
error across the predictor variable. Our predictions may vary, but we keep the transformed model. We may not
always get count data, so depending on the relationship between variance and mean we might use different
transformations:

Relationship Transformation
ff2 ∝ E(Y )(1− E(Y )) y∗ = sin−1(

√
y)

ff2 ∝ E(Y )2 y∗ = log y

ff2 ∝ E(Y )3 y∗ = y−
1
2

ff2 ∝ E(Y )4 y∗ = y−1

We can verify that the delta method is variance stabilizing. We need to make sure that interpretability is not
lost: in practice a transformation is chosen empirically. There is no exact rule about which transformation is
best for a set of data. Transformations of X are discussed later.

June 6: Lecture 7

Assignment 2 Instructions

The idea is to create a regression model, and defend validity of the model using concepts learned in class. We
use the NHANES dataset, including demographic information. We do both inference and prediction using this
regression model; create training and test sets. We create a cross sectional dataset, where each individual
is considered independent. We will elaborate about the theory next Monday.

Word limit 1000 excluding captions and figures. Maximum 5 tables and figures. Up to 3 additional tables
and figure should be included in an appendix if they are relevant to the analysis. Due June 18.
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Transformation for Non-Linearity
The final thing we discuss in simple linear regression are transformations for non-linearity. We have seen these
before in variance stabilizations. These transformations are also applied when there is non-linearity so that
we get some linear relationship after transformation. For example, consider the true model

Y = ˛0X
˛1

Then transforming Y ? = log(Y ) and X? = log(X) (natural log) then

Y ? = log ˛0 + ˛1X
?

Then Y ? is linear with the new transformed X?. We can now use least squares to fit a relationship between
Y ?; X?, and recover ˛0 with exp.

Example 9. In slide example, maximum salary regressed on score is a good linear fit, but the standardized
residuals show a quadratic curve-like relationship; there is an assumption-violating pattern. Assuming the
underlying model is Y = ˛0X

˛1 , we fit a linear relationship, and find that the new standardized residuals show
some pattern.

The Box-Cox Transformation
To remain interpretable, the scaling of X; Y must be the same. In order to best get rid of non-linearity, we
use the Box-Cox transformation.

We have often seen some kind of power transformation on Y :

 (y; –) = y–

instead of y . To determine the most appropriate value of –, we use maximum likelihood estimation. We
assumed Y = ˛0 + ˛1X + "; " ∼ N(0; ff2) so that

Y | X ∼ N(˛0 + ˛1X; ff
2)

Therefore

L(˛0; ˛1; ff2) =
nY
i

1√
2ıff2

exp

„
−1

2

(yi − ˛0 − ˛1xi )
2

ff2

«
=
`
2ıff2

´− n
2 exp

„
− 1

2ff2
RSS

«
Therefore maximum likelihood estimate is the same as when RSS is minimized; the estimate for ˛0; ˛1 we
first developed. For the Box-Cox transformation, we fit the model parameters ˛0; ˛1 to transformed RSS:

RSS =
nX
i

( (yi ; –)− ˛0 − ˛1xi )
2

For this expression, we minimize the fitted RSS over all possible – numerically; since we cannot do so
analytically. In other words, for some –, fit ˛0; ˛1 so that RSS is minimized, and take this minimum
over all possible –. Problems arise when – = 0, where the response becomes constant. We therefore use
 (y; –) = y–−1

–
, since lim–→0

y–−1
–

= log y . However, small change of – greatly changes  , so we set

 (y; –) =

8<:
gm(Y )–−1y– − 1

–
– ̸= 0

gm(Y ) log(Y ) – = 0

where gm(Y ) = exp
`
1
n

Pn
i log(Yi )

´
. This is the Box-Cox transformation. Adding geometric mean is not

always necessary. We can also tranform the predictor variable:

 (X; –) =

8<:
X– − 1

–
– ̸= 0

log(X) – = 0

That is, fit E(Y | X) = ¸0 + ¸1 (X; –), and find maximum of maximized MLE for all possible –. Note
we do not multiply by G.M., since we do not need to stabilize X. We now have  (Y; –Y );  (X; –X) where
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we maximized MLE for these values of –y , –X . We can replace both X; Y with  (Y; –Y );  (X; –X), and
maximize, to choose the best transformation. This is a nightmare for interpretation though. In the example,
–Y = 0, –X = 0:5 seems to create the best fit.

Although these transformations are terrible for interpretability, they increase the predictive power of the model.
The problem of interpretability vs. predictability is a major one in data science. In a predictive model, we use
these transformations since they help correct modelling assumptions and improve predictive power. Usually
log or square root transformations correct a skew in either variable, and the choice depends on the data.

Diagnostics in Multiple Linear Regression
Checking the model assumptions is actually simpler in MLR than in SLR.

Leverage Points

A leverage point is one that lies far from the rest of the observations with respect to its predictor values.
The least squares procedure fits a plane that minimizes the distance between each point and this plane. While
it does not mean that a leverage point will be influential to the model fit, this potential to influence the line
is why we identify these points.
Recall that the projection of Y onto X,

Ŷ = X ˆ̨ = X(X ′X)−1X ′Y = HY

where H is an n × n matrix with rank p + 1, where p + 1 is the number of ˛i . We denote H = (hi ;j)1≤i ;j≤n.
Then

Ŷ = HY =⇒ ŷi =
nX
j

= hi ;jyj

If an observation is a leverage point, the fitted value is strongly attracted to the observed value. We concern
ourselves with the diagonal elements of the hat matrix hi ;i . Unlike simple LR, hi ;j are not easy to calculate,
so we rely on software for the hat matrix. An observation is a leverage point if hi ;i > 2 p+1

n
.

Example 10. model.full in R

Standardized Residuals

Recall e = (I − H)Y =⇒ ei = (1 − hi ;i )yi −
P

i ̸=j hi ;jyj . We can standardize the residuals similar to SLR.
We can show V (ei ) = (1− hi ;i )ff2, so it is best to standardize when they have constant variance. We do this
by

ri =
ei

s
p
1− hi ;i

where s comes from the MLR version, s =
r

RSS

n − p − 1
. Like in SLR, these can be used to detect outliers and

QQ-plot to test normality assumptions. However, it is difficult to test their relationship with the predictors since
there are many of them, so plots against individual predictors are used. Any pattern shows that assumptions
are violated.

Influential Observations

We saw already that we need to be concerned with leverage points and outliers. If both of these observations
have the potential to influence the regression line, then we need a way to determine which observations we
should be concerned with. Such observations are influential observation for the regression line. We quantify
the amount of influence each observation has in three ways.

Definition 11. In MLR, the Cook’s distance is

Di =
(Ŷ(i) − Ŷ )′(Ŷ(i) − Ŷ )

(p + 1)S2
=

„
r2i

p + 1

«
·
„

hi ;i
1− hi ;i

«
A point can be an influential observation if the model fits the i-th observation poorly, giving a large Cook’s
Distance. While the Cook’s distance looks at the effect of a single observation on all fitted values, we can
quantify the effect on its own fitted value. This is quantified with

21



STA302

Definition 12. The DFFITS statistic

DFFITSi =
yi − ŷi(i)q
S2
(i)hi ;i

=

„
hi ;i

1− hi ;i

« 1
2 ei

s(i)
p
1− hi ;i

where ŷi(i) is the predicted value for the observation i if it not included in the model.

If the residual with the observation removed is very large, then it does not lie close to the fitted regression. The
equivalent expression looks similar to the Cook’s distance, but does not provide many advantages compared
to Cook’s distance. Cook’s distance is more important. With DFFITS, an observation is considered influential

if |DFFITSi | > 2

r
p + 1

n
.

Another statistic for identifying influential points if the DF BETAS. It directly quantifies the effect of the
i-th observation on the least squares

Definition 13. The DF BETAS are calculated as

DFBETASi =
ˆ̨
j − ˆ̨

j(i)q
S2
(i)(X

′X)−1
j;j

Here ˛j(i) is the estimated coefficient for predictor j when i is not included in the data. This statistic is
calculated for all n observations. A large change in the predictors when observation i is removed means the
observation greatly influences the fit of the regression line. Typically the i-th observation is influential if

|DFBETASi | >
2√
n
.

All of the above statistics may give different significant observations, but we should not disregard any of them.

Non-Linearity

We have again assumed the relationship is linear. If the true relationship is non-linear: E(Y | X) = g(˛0 +
˛1X1 + : : : + ˛pXp) then we still use Box-Cox to transform X; Y . We can transform the response Y , or
transform both. To transform Y , we still use

 (y; –) =

8<:
gm(Y )–−1y– − 1

–
– ̸= 0

gm(Y ) log(Y ) – = 0

where – is chose by maximizing the MLE where yi is replaced with  (yi ; –).
Summary: in diagnostics we have leverage points or outliers, we calculate cooks distance, DFFITS, if there is
nonlinearity we can choose a transformation according to box-cox.

Corelated Predictors
In sum: What if X ′X is not invertible? When does this occur, and what do we do?

In Task 2 of A1, we saw that fitting an SLR to corelated predictors lead to biased sampling distributions of
the predictor with smaller variance. Total corelation of Xi ; Xj leads to linear dependence of columns in X ′X,
making it non-invertible, and so we cannot fit a model.

When predictors are corelated, then that affects their individual relationship with the outcome. Predictors
could be weakly, moderately, or strongly correlated. If Corr ≈ 1, we cannot obtain a least squares estimate.
Even with moderate correlation, we might still have to be careful, since multicolinearity and non-full rank
matrix may occur. This affects prediction etc.

When X = [X1; : : : ; Xp] is the covariance matrix, if for some ti ,
P
tjXj = 0 the columns are linearly depen-

dent; (X ′X)−1 is not invertible. But if corelations between predictors are very high, then det(X ′X) will be
close to 0 and issues may occur.

Assuming we have a linear model y = ˛1x1 + ˛2x2 + ", it is not difficult to see
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Example 11. Assuming we have a linear model y = ˛1x1 + ˛2x2 + ", we see

X ′X ˆ̨ = X ′y =⇒
„

1 r12
r21 1

«„
ˆ̨
1

ˆ̨
2

«
=

„
r1y
r2y

«
where r12 = Corr(X1; X2) and rj;y = Corr(Xj ; Y ). Thus detX ′X = 1− r212. As r12 → 1 then this determinant
gets small, and X ′X becomes singular. Moreover, V ( ˆ̨) → ∞ since V ( ˆ̨ | X) = (X ′X)−1ff2. So for high r12,
our confidence intervals become very wide and unreliable.

We cannot remove the extra linearly dependent variable; as we saw in the midterm, this creates bias in the
other predictor. Let’s assume C = (X ′X)−1 and V ( ˆ̨j | X) = ff2Cj;j . When we have > 2 predictors, it can be
shown that

Cj;j =
1

1− R2
j

where R2
j is the coefficient of multiple determination of Xj ∼ X1 : : : Xn. Cj;j is the variance inflation factor.

The first thing we check is VIF > 5, if so we deal with such variables separately or at least address them.

June 8: Lecture 8

Handling Multicolinearity
To handle multicolinearity we can either collect more data, or re-specify the model. By removing one of
the correlated predictors, the effect of multicolinearity should be reduced. However, if the wrong predictor is
removed, then it may reduce the predictability of the model.

ANCOVA: Analysis of Covariance
We discussed dummy variables; if X = 0; 1 then

E(Y | X) = ˛0 + ˛1X =⇒ E(Y | X = 0) = ˛0; E(Y | X = 1) = ˛0 + ˛1

What if we have multiple categorical predictors (age, sex, etc.)? Then we create multiple categorical predictors,
X1; X2 and fit the MLR model E(Y | X) = ˛0 + ˛1X1 + ˛2X2. As a specific case,

E(Y | X1 = 0; X2 = 1) = ˛0 + ˛2

In order to view the significance of each categorical predictor, we do ANOVA.When X1 is categorical, X2 is
continuous and we fit an MLR model, then

E(Y | X1 = 0; X2) = ˛0 + ˛2X2; E(Y | X1 = 1; X2) = ˛0 + ˛1 + ˛2X2

We get two lines with the same slope, but the intercept changes with the categorical X1. Often X2 is referred
to as the effect. However, given a change in the categorical predictor, we may expect a more rapid increase
in X2. I.e. smoking may cause blood pressure to increase more rapidly with age. Then we have

E(Y | X1 = 0; X2) = ˛0 + ˛2X2; E(Y | X1 = 1; X2) = (˛0 + ˛1) + ( ˛1;2|{z}
interaction effect

+˛2)X2

˛1;2 is often called the interaction effect, or the difference in difference parameter, while the parameters
˛1; ˛2 are the main effects. Our underlying model is

E(Y | X1; X2) = ˛0 + ˛1X1 + ˛2X2 + ˛1;2X1X2| {z }
interaction

the regression lines are no longer parallel. Slopes should be interpreted separately for the categorical X1.

Example 12. We look at the travel dataset in Slide 44. Given the categorical D for a cultural trip, or an
adventure trip, as age increases the categorical predictor gives opposite effects on the regression line. I.e.
the slope and intercepts change dramatically; cultural trips become more popular with age, and opposite for
adventure trips. Intepretation of ˛0 is average amount spent on adventure when age is 0, where adventure is
set to 0 in the categorical variable.

Depending on the travel group that these belong to, there is an different effect on the regression line. The
indicator variable should be added to the model. We may then check whether the interaction term is significant
with a t-test.
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Model Selection
If we have n predictors for n observations, then we get a perfect fit since our projection space can be the
whole plane. We cannot just keep adding variables to our model, since we can overfit on the test set. We
now move to prediction and predictive modeling; the first step to avoid overfitting is through model selection.2

As we saw in multicolinearity, it is difficult to decide which predictors to include in a model. This general
process is model selection, also called variable selection. What makes a model ‘best’ depends on the purpose
of the model; prediction, interpretation, etc. If interpretability is best, prediction accuracy is secondary, and
fewer significant variables are best. For prediction, adding variables is important; more predictors lead to
predictions with lower bias with larger variance. We consider some criteria for choosing possible subsets of p
predictors.

Adjusted R2

Recall that as you increase the number of predictors, then the multiple coefficient of determination R2 also
increases. We therefore choose the smallest model that maximizes R2

adj , but this may overfit and should be
used with caution.

Akaike’s Information Criterion

Definition 14. Akaike’s infromation criterion is given by

−2
“
‘( ˆ̨; f̂f2)− (p + 2)

”
where ‘ is the log likelihood of the model.

A large ‘ will decrease the AIC, but too many parameters increase the AIC. We want to choose the model
with the lowest AIC. Rewriting, we see the relationship

‘ =
n

2
log(2ıff2)− 1

2ff2
RSS =⇒ AIC ∝ n log

„
RSS

n

«
+ 2p

Corrected Akaike’s Information Criterion

AIC has the tendency of overfitting or some situations, particularly when the penalty p+2 or 2p is not strong
enough. This happens with small samples or the number of parameters is a large fraction of the sample size.
In this case, we use the following metric

Definition 15. The corrected AIC is written

AICC = AIC +
2(p + 2)(p + 3)

n − p − 1

and is preferred to the AIC when
n

p + 2
≤ 40.

The ‘best’ model is also the one with the lowest AICC .

Bayesian Information Criterion

Definition 16. The Bayesian Information Criterion is written

BIC = −2‘+ (p + 2) log(n)

This penalizes parameters more than AIC, and therefore prefers simpler models than AIC. It can also be
simplified as

BIC ∝ n log

„
RSS

n

«
+ (p + 2) log(n)

The model with lowest BIC is preferred.

Example 13. From the lecture slides, we fit models with various predictors, and notice that a particular
subset has lowest AIC; AICc ; BIC and high R2

adj = 93%, so we use this model.
2At the most basic level, linear models are a form of machine learning. Once we ‘learn’ model parameters, we can predict Y

for a new dataset.
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Stepwise Variable Selection
For n possible predictors, there are 2n possible models, so we cannot practically try all possible combinations.
We use forward stepwise selection: we try the SLR Y ∼ Xi , and choose the most significant variable. Then
we add less and less significant variables Xj in Y ∼ Xi ; Xj , until BIC stops decreasing. Similarly, in back-
ward stepwise selection we can delete predictors one at a time from Y ∼ X1; : : : ; Xp until BIC is minimized.

Both ways are equivalent to choosing the predictor with the lowest p-value. Adding variables with low p-value
increases probability of type I error, but removing increases type II error. Type II error is ‘less controversial’
than type I, so this method is preferred. Ideally, both forwards and backwards addition will give the same
model, but in practice this often does not happen. To do the full form of stepwise variable selection,
we go both back and forth, adding and removing variables. Diagnostics after stepwise selection should also
be done, and to note how much they change in comparison to before selection, but do not need to be published.

While these are quite helpful, the estimated coefficients that we get from a post-selection model will actually
be biased estimators. This can result in enlarged test statistics t; F that are larger than they should be. We
need to determine whether a model is reasonable for prediction purposes, that is validate it.

Bias-Variance Decomposition
So far we discussed inference: estimating true population relationships, and prediction: how well the fitted
model predicts new data. Prediction is the basis of machine learning.

In ML, the bias-variance tradeoff is important. We first discuss the concept of learning and testing datasets.
The training dataset is used for model fitting, but the testing dataset is used to check predictions. Training
and and testing sets must be independent; samples must be partitioned between the two. Overfitting to
training data occurs when a model performs much worse on the test data.

Definition 17. Suppose we want to predict an unobserved y0 at the test point x0. Let y0 = f (x0) be the
true, possibly non-linear, relationship, and our linear prediction be denoted ŷ0. Then the mean squared error
is given by

MSE(x0) = Efi [f (x0)− ŷ0]
2 = Efi [ŷ0 − Efi (ŷ0)]

2 + [Efi (ŷ0)− f (x0)]
2 = V (ŷ0) + [Efi (ŷ0)− f (x0)]

2

where fi is the conditional training data, and the second term is the squared bias.

In machine learning, the mean squared error is a commonly used loss function, measuring the deviation of
prediction from training data. This decomposition becomes very useful in this context. Minimizing MSE
minimizes bias or variance or both for ŷ0 given training set fi . Bias indicates how accurate predictions are,
and variance gives how much predictions change from sample to sample. L.S. estimates are unbiased for the
true model, but the variance can be very large when there are lots of predictors for limited observations.

Shrinkage Methods
Recall the purpose of model selection. When there are too many variables prediction variance increases, and
interpretability suffers. We discussed stepwise variable selection, but this does not work when n ≤ p.

One idea is to apply some constraint that shrinks less important parameter estimates to 0. Ridge regression
shrinks the coefficients by imposing a penalty on their size, but does not make them 0, and is not used for
variable selection. In ridge regression,

ˆ̨ = argmin
˛

8<:
nX
i

0@yi − ˛0 −
pX
j=1

xi ;j˛j

1A+ –

pX
j=1

˛2
j

9=;
which is equivalent to

argmin
˛

nX
i

0@yi − ˛0 −
pX
j=1

xi ;j˛j

1A and
‚‚‚ ˆ̨‚‚‚2

2
≤ t; t ∈ R
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Ridge regression is used to estimate coefficients of models when the predictors are highly corelated. The
additional penalty on the model adds a degree of bias, but reduces the high variance caused by multicolinearity:
part of the bias-variance tradeoff. In MLR, we write

RSS(–) = (Y − X˛)′(Y − X˛) + –˛′˛

and minimizing the RSS produces
ˆ̨ = (X ′X + –I)−1X ′Y

An important method for variable selection is a similar minimization subject to the LASSO: Least Absolute
Shrinkage and Selection Operator:

ˆ̨ = argmin
˛

8<:
nX
i

0@yi − ˛0 −
pX
j=1

xi ;j˛j

1A+ –

pX
j=1

|˛j |

9=;
This has no closed form solution, and must be found numerically. The minimal ˆ̨ gives values where many
˛j are 0, and therefore less important, so we may remove the corresponding predictors. It is equivalent to

argmin
˛

nX
i

0@yi − ˛0 −
pX
j=1

xi ;j˛j

1A and
‚‚‚ ˆ̨‚‚‚

1
≤ t; t ∈ R

Lasso only selects n variables, cannot select p ≥ n variables. Lasso can fail to do grouped selection of
predictors with multicolinearity to reduce variance, and instead just selects one: it cannot select all of them,
like ridge can.

Example 14. Choosing age categories, one particular category may be chosen, with predictor for other
categories being 0 due to LASSO shrinkage. However, we lose information, since other age ranges may be
associated with other variables.

We use a linear combination of shrinkage methods to fix this. A mixed regularization, the elastic net penalty,
was introduced using the strengths of both ridge and LASSO, with elastic net mixing parameter ¸

–

 
(1− ¸)

pX
i=1

˛2
i + ¸

pX
i=1

|˛i |
!

= –
“
(1− ¸) ∥˛∥22 + ¸ ∥˛∥1

”
In all cases, – is chosen by cross validation, or can be chosen with the glmnet package in R.
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June 13: Lecture 9

The final lecture for the assignment. We discuss assignment after model validation, and revisit multicolinearity.

Model Validation
Model validation happens through analyzing how the model generalizes to test data. We discuss whether
we overfit to training data, and how the model performs with new data. One independent test is often not
enough to validate a model, since we may have leverage points or outliers. We need many test sets, but this
is often not possible. We have two goals:

1. Model selection: Estimating performances of different predictors to find the most predictive ones

2. Model validation: Estimating the prediction error on new data

Example 15. If our sample is n = 100, we can partition the set into k = 10 groups. The first 9 datasets
may be used for model fitting, the 10th is used to check prediction error. Using every set of 10 datapoints as
test set, but others as training set, we do cross-validation. This is 10 fold cross validation.

Definition 18. Choosing different partitions of data set as training data, and the rest as training data, for
different partitions, is cross validation.

Resampling methods allow us to classify or predict a response accurately, but we skip bootstrap for now.
Cross validation is important for the assignment!

Cross validation algorithm:

• Randomly split the data into k equal parts.

• Fit the model with k − 1 training parts, predict the outcomes for the last test part.

• use all k parts as a test set.

• The prediction accuracy can be checked with mean absolute bias or mean squared error.

• The predictions an be plotted with observed values to check the accuracy of the estimates visually.

For cross validation, we will be using the ols code from rms package in R.

Definition 19. The estimator of the mean squared error is given by

MSE =

P
(yi − ŷi )

2

n

Example 16. In the slides, we construct model and do validation. We choose – for regularization using
cross-validation. See this week’s R code.

Requirements for Assignment

Literature review/EDA, model fitting, diagnostics, variable selection. We only show the diagnostics for the
very last model. Show only the steps that matter in this assignment. Improperly captioned and labelled tables
lose marks: practice writing a real report.

Clarifications

• Issues may have started around variable transformations. Try showing sin−1(
√
y) is appropriate for the

binomial case, when ff2 ∝ E(Y )(1− E(Y )).

• In the Box-Cox transformation we use the Newton-Raphson numerical method to obtain – for the most
appropriate power transformation.
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June 15: Lecture 10

Assignment Hints
When running vif in the project, we get a GVIF column. Recall when we calculate the variance inflation

factor, we define vif for Xi as
1

1− R2
i

where R2
i is the coefficient of determination of Xi ∼ X1; : : : ; Xn. The

GVIF has the exact same interpretation of VIF, but for the general case with categorical predictors.

Note: LASSO in this case is bad, since it does not work well with many categorical variables.

Generalized and Weighted Least Squares
Inference for our least square estimates parameters for Y = X˛ + " require the Gauss-Markov assumption.
The Gauss-Markov theorem assumes V (") = ff2I, which is a strong assumption. Instead of this we assume

V (") = ff2V

where V is a cov. matrix, and has non-zero off diagonal elements. Note there is covariance between "i ; "j
and variance is not the same for every "j . In this case we cannot minimize (Y −X˛)′(Y −X˛). This will not
provide the correct minimum since it assumes homoscedasticity. Instead, we minimize

argmin
˛

(Y − X˛)′V −1(Y − X˛)

Since ff2V is a covariance matrix, it must be symmetric and positive definite. Since it is positive-definite,
there exists an n × n symmetric matrix K so that K′K = KK = V : it admits a square root.

Definition 20. Using K, the symmetric square root of the symmetric positive definite V satisfying K′K =
KK = V , define

Z = K−1Y; B = K−1X; ‚ = K−1"

where X, Y , " are the usual MLR matrices. This gives the transformed relationship

Z = B˛ + ‚

Our next goal is to show that the transformed variables follow the Gauss-Markov assumptions! We begin by
showing ‚ ∼ N(0; ff2I).

Proposition 18. E(‚) = 0

Proof. E(‚) = E(K−1") = K−1E(") = 0

Proposition 19. V (‚) = ff2I

Proof.

V (‚) = E ((‚ − E(‚))(‚ − E(‚))′) = E (‚‚′)

= K−1E(""′)K−1 = K−1ff2V ′K−1 = ff2I

Theorem 4. ‚ ∼ N(0; ff2I) follows from the above.

Note: In practical settings, the matrix V is very difficult to estimate.

Minimizing the RSS for the transformed variables with GM assumptions,

RSS(˛) = ‚′‚ = "′V −1" = (Y − X˛)′V −1(Y − X˛)

which gives ˆ̨ = argmin˛(Y − X˛)′V −1(Y − X˛).

Proposition 20. ˆ̨ = (X ′V −1X)−1X ′V −1Y
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Proof. Since Z = B˛ + ‚ follows the GM assumptions, we estimate ˆ̨ for this model and change variable.

ˆ̨ = (B′B)−1B′Z = ((K−1X)′K−1X)−1(K−1X)′K−1Y

K−1 is symmetric, inverse of transpose is transpose of inverse, and (K−1)2 = V −1 (see Appendix).

= (X ′(K−1)2X)−1X ′(K−1)2Y

= ˆ̨ = (X ′V −1X)−1X ′V −1Y

Proposition 21. V ( ˆ̨) = ff2(X ′V −1X)−1

Proof. Just expand.

Var( ˆ̨) = Var((X ′V −1X)−1X ′V −1Y )

Recall for a matrix A, Var(AY ) = AV (Y )A′, so we use the same on the above.

= (X ′V −1X)−1X ′V −1Var(Y )V −1X(X ′V −1X)−1

= (X ′V −1X)−1X ′V −1ff2V V −1X(X ′V −1X)−1

= ff2(X ′V −1X)−1(X ′V −1X)(X ′V −1X)−1

= ff2(X ′V −1X)−1

Now assume in the case of generalized least squares, the covariance terms between elements are zero but
variances are not equal. Then we may write

ff2V =

0BBB@
1
w1

0 : : : 0

0 1
w2

: : : 0
...

...
. . .

...
0 0 : : : 1

wn

1CCCA = ff2W−1 =

0BBB@
ff21 0 : : : 0
0 ff22 : : : 0
...

...
. . .

...
0 0 : : : ff2n

1CCCA
Definition 21. When Cov("i ; "j) = 0; i ̸= j then writing ff2V = ff2W−1, we call W the weight matrix
written

W =

0BBB@
w1 0 : : : 0
0 w2 : : : 0
...

...
. . .

...
0 0 : : : wn

1CCCA
In the case where ff2V = ff2W−1, we have the weighted least squares estimates

ˆ̨
W = (X ′WX)−1X ′WY Var( ˆ̨w ) = ff2(X ′WX)−1

The weights of W are decided mostly from prior knowledge. When the true model is weighted, the OLS
estimates are unbiased but have larger variances.

Polynomial Regression
In linear regression, we mean linear with respect to ˛: linear in parameters. This makes sense from a statistical
point of view, since we minimize RSS with respect to ˛. The relationship between Y ∼ X can be non-linear,
as long as

Y = ˛0 + ˛1ffi1(X1) + ˛2ffi2(X2) + : : :+ ˛pffip(Xp)

for ffii non-linear functions, but linear in ˛. We still use least squared estimates to estimates ˛, but treat
x̃2 = ffi2(x2).

Example 17. Based on this equation, with one predictor x we can fit the model y = ˛0 + ˛1x + ˛2x
2 + ".

Set x̃1 = x; x̃2 = x2 and rewrite
y = ˛0 + ˛1x̃1 + ˛2x̃2 + "

Clearly Cov(x̃1; x2) ̸= 0, but we can use generalized least squares estimates for ˛1; ˛2.
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Generalized Linear Model
We go deeper into GLM and GAM in STA303. Up to this point, we have considered Y to be a continuous
random variable. One of the most famous examples of a GAM is when Y ∈ {0; 1}, and our model decides
which value Y takes.

When Y is binary, we want to maximize the domain of X to give an estimate for the expectation of Y . If
Y ∈ {0; 1} and E(Y | X) = ˛0 + ˛1X, then

0 < E(Y | X) < 1 =⇒ 0 < ˛0 + ˛1X < 1

If we take
log(E(Y | X))

as our response, then E(Y | X) ∈ (0; 1) gives

−∞ < ˛0 + ˛1X < 0

The ratio

ffi(E(Y | X)) = log

„
E(Y | X)

1− E(Y | X)

«
= ˛0 + ˛1X

has a linear relationship with respect to the parameters, and is valid for all X, so that ˛0 + ˛1X ∈ R.
Calculating, we can find

E(Y | X) =
exp(˛0 + ˛1X)

1 + exp(˛0 + ˛1X)

where this is the cdf of the logistic distribution! This is logistic regression.

Definition 22. A generalized linear model is a model so that there exists a link function ffi where

ffi(E(Y | X))

is a linear function of parameters (˛i )0≤i≤p. In a linear model, ffi = I.

Definition 23. Logistic regression is a GLM with one non-constant predictor so that the link function

ffi(E(Y | X)) = log

„
E(Y | X)

1− E(Y | X)

«
Consider the logistic model, but when X is a binary predictor. Denote

E(Y | X = 0) = p0; and E(Y | X = 1) = p1

Then log( p1
1−p1 ) = ˛0 + ˛1; log(

p0
1−p0 ) = ˛0. Then writing the odds ratio Ω =

p1=(1− p1)

p0=(1− p0)

log

„
p1=(1− p1)

p0=(1− p0)

«
= log

„
p1

1− p1

«
− log

„
p0

1− p0

«
= ˛1

Then exp(˛1) = Ω. If there are more predictors X2; : : : ; Xp, then this is true while other predictors are held
constant. If we have a true model of

Y = ˛0 + ˛1X + ˛2Z + ˛1;2XZ

where X;Z are binary predictors with interaction then

Z = 0 =⇒ ΩX = exp(˛1)

Z = 1 =⇒ ΩX = exp(˛1 + ˛1;2) = exp(˛1) · exp(˛1;2)

˛1;2 indicates how much the odds ratio changes with the interaction of Z. This is referred to as the ratio of
odds ratios.
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Generalized Additive Model
In GLM we used a transformation of E(Y | X) to linearity, but this can be difficult to find many predictors.
In machine learning, often Y = f (X1; : : : ; Xp) + " is used, but this is not interpretable. A good compromise
is the additive model.

Definition 24. An additive model is a model so that

Y = ˛0 +

pX
j=1

fj(Xj) + ":

where fj is any function so that Y remains a random variable.

These models are more flexible than the linear models, but still interpretable since fj give somewhat of a
marginal relationship between X and Y . Best transformations are determined simultaneously and without
parametric assumptions for their form. In its basic form, the additive model will do poorly when interactions
exist, and we may consider fjk(Xj ; Xk) to fix these. Categorical variables can be accomodated using the
regression approach:

Y = ˛0 +

pX
j=1

fj(Xj) + Z‚ + ":

where Z is the design matrix for the categorical variables, and ‚ are the regression parameters for them.

Definition 25. A generalized additive model is a model with a link function ffi where

ffi(E(Y | X)) = ˛0 +

pX
j=1

fj(Xj) + Z‚ + "

is an additive model of fj .

Some examples of generalized additive models are

• Regression splines: They divide the range of X into k distinct regions, and within these regions a
distinct polynomial is fit to the data. The polynomials have smooth transitions between the regions.
These can produce an extremely flexibly fit: it is an extension of stepwise and polynomials functions.

• Smoothing splines: Similar to regression splines but arise in slightly different situation. These result
from minimizing a residual sum of squares criterion subject to a smoothness penalty. Similar to shrinkage,
but with different penalty.

• Local regression: Regions the space is divided in can overlap, and transition in a smooth way.

Take STA303!

June 20: Lecture 11

Final exam: Friday, June 24 9:00am-12:00pm

Clarifications

1. In GLS, we have ˆ̨ = (X ′V −1X)−1X ′V −1Y (variance proof)

2. add why X ′V −1X is symmetric

3. both OLS and GLS estimators are unbiased
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Principal Component Analysis

Suppose there exists multicolinearity between predictors. Then V ( ˆ̨) becomes large and our confidence inter-
vals are unreliable. After checking VIF, it is not straightforward to choose which predictors to remove.

For prediction, when multicolinearity exists, we can use principal components regression to get good predic-
tions. A PCA is concerned with explaining the variance covariance structure of a set of variables through
a few linear combinations. It can explain most of the variation in this way. If we have p highly corelated
predictors, and we can explain this variablility with k < p principal components, we may run the regression
on the components and avoid multicolinearity issues. This often reveals underlying relationships in predictors.

Suppose we have a predictor vector, given by X = (X1; : : : ; Xp) and assume they have a multivariate normal
distribution with covariance matrix Σ, where ffi ;j = Cov(Xi ; Xj). Since Σ is a p×p symmetric positive definite
matrix, by the real spectral theorem it has p orthogonal eigenvectors, and eigenvalues –1 ≥ : : : ≥ –p ≥ 0.
Then let

Z =

0B@Z1

...
Zp

1CA = A

0B@X1

...
Xp

1CA = A · X

for a linear transformation A. Where we write Z1 = ¸′
1X for some vector ¸′

1. Recall that eigenvectors
corresponding to distinct eigenvalues of a symmetric matrix are orthogonal.

Definition 26. Let Σ be a covariance matrix with the random vector X, with eigenvector eigenvalue pairs
(–1; t1); : : : ; (–p; tp). Then we define the principal components as

Zi = tTi X

and have properties V (Zi ) = t ′iffti and Cov(Zi ; Zj) = 0. In other words, we change basis to the eigenvectors
of the covariance matrix and get nice properties.

Reminder: Use characteristic polynomial to find eigenvalues.

Now, assume Σ = (ffi ;j)1≤i ;j≤p is a covariance matrix. We know tr(Σ) =
P

i ffi ;i . We can also diagonalize

Σ = TΛT ′

where T ′ = (t1; : : : ; tp) is the change of basis to the principal components, and Λ is the diagonal matrix of
eigenvalues. Since trace is independent of basis,

tr(Σ) =
X
i

–i

and
P
V (Xi ) =

P
V (Zi ). Recall that our regression was defined Y = X˛ + ". Transforming

Z = XT and ¸ = T ′˛

we may write Y = XTT ′˛ + " = Z¸ + " since TT ′ = I is the change of basis. Instead of calculating e.v.
pairs for Σ, we do it for X ′X so

X ′X = TΛT ′ =⇒ Z′Z = T ′X ′XT = T ′TΛT ′T = Λ

We can estimate
ˆ̧ = (Z′Z)−1Z′Y = Λ−1Z′Y and V ( ˆ̧) = ff2(Z′Z)−1 = ff2Λ−1

Small eigenvalues of X ′X indicate that the variance of the corresponding regression coefficient will be large.
If all –i = 1 then the predictors are orthogonal, but if some –i = 0 then they are linearly dependent. For the
untransformed estimators,

Var( ˆ̨) = Var(T¸) = T–−1T ′ff2

Multiplying, this implies

Var( ˆ̨i ) = f̂f2
pX
j=1

t2i ;j
–j

Example 18. We plot eigenvalues of the components against component number, and choose the first
components where the eigenvalues is decreasing rapidly: “find the elbow". We can then use these as our
predictors.
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Confounding
Definition 27. Confounding is when in an assumed relationship Y ∼ X, there exists a third variable Z,
influencing both X; Y , so that there exists a spurious association between Y and X.

The presence of a confounding variable introduces bias in the marginal association between X and Y .

Fin
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