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1 Introduction

Time series can be defined as a collection of random variables indexed according to the order they are obtained
in time. We can consider time series as a sequence of random variables

x1; x2; : : : ; xt ; : : :

where xt is obtained at t-th time point. In this course, the indexing variable t will typically be discrete and
not continuous. I.e. t ∈ N or t ∈ Z. A time series is a series of observed values (xt), we call the unrealized
model a process in this course.

Definition 1. A series is stationary if it remains around a mean value over time.

Examples: Daily temperature, stock prices, generally measurements

1.1 Box-Jenkins Methodology
1. Identification: Examine graphs and identify patterns and dependency in an observed time series. We

look for: trend, periodic trend, outliers, irregular change

2. Estimation: Select a suitable fitted model for predicting future values.

3. Diagnostic checking: Goodness of fit tests and residual scores to estimate adequacy of the model,
determine unaccounted for patterns.

4. Forecasting: Use model to forecast the future values.

We say forecasting instead of prediction to indicate foretelling closely into the future.

1.2 Financial Time Series
We motivate a lot of this course with financial data, so we define terminology for financial time series.

Definition 2. The net return from the holding period t − 1 to t is

Rt =
xt − xt−1

xt−1
=

xt
xt−1

− 1

i.e. relative percent increase of (xk) from t − 1 to t.

Definition 3. The simple gross return from the holding period t − 1 to t is
xt
xt−1

= 1 + Rt

Definition 4. The gross return over the most recent k periods is defined as

1 + Rt(k) =
xt
xt−k

=
i=kY
i=0

xt−i
xt−i−1

= (1 + Rt) : : : (1 + Rt−k)

Definition 5. The log returns or continuously compounded returns are denoted rt and defined as

rt = log(1 + Rt) = log(xt)− log(xt−1)

Returns are scale-free but not unitless since they depend on t.

Definition 6. The volatility is the conditional standard deviation of underlying asset return.

In most financial time series data, the scale of the volatility appears to be the same. Highly volatile periods
tend to be clustered together.

We may decompose a financial time series as

xt = Tt|{z}
trend

+ st|{z}
season

+ ct|{z}
cycle

+ It|{z}
irregularity

If these components are corelated, use a multiplicative decomposition xt = TtstctIt . If only some are corelated,
use a mixed model, i.e. xt = stTt + ct + It .
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1.3 Time Series Models
Definition 7 (Moving average). The k-th (odd) moving average of a time series (xt) is defined as the sum
of the k values of the time series around xt . For example, the third moving average series for (xt) is

yt =
1

3
(xt−1 + xt + xt+1)

If k is even, we reindex and define the time of the moving average to be at the middle of the times we
evaluate. For example the 4-th moving average of (xt) is

yt =
1

4
(xt−2 + xt−1 + xt+1 + xt+2)

Moving averages allow us to ‘smooth’ a time series by reducing the noise while maintaining the trend in the
series.

Definition 8 (White noise). A white noise process is a collection of uncorrelated and identically distributed
random variables (wt), each with 0 mean and finite variance ff2w for every t. If the white noise follows a
normal distribution, i.e.

wt ∼ N(0; ff2w )

then it is Gaussian white noise. In the Gaussian case, independent and uncorrelated are the same, so wt are
i.i.d.

Definition 9 (Random walk). A random walk with drift (xt) is a series

xt = ‹ + xt−1 + wt

where wt ∼ wn(0; ff2). For t ≥ 1, ‹ is the drift. When ‹ = 0, the series is simply a random walk:

xt = xt−1 + wt

The series is the same as in the previous time step plus a white noise shock. Therefore we may write

xt = ‹t +
tX
j=1

wj ; t ≥ 1

If ‹ ̸= 0, the series is not stationary.

Definition 10 (Signal in noise). Many realistic models for generating time series assume an underlying
sinusoidal signal:

xt = A sin(!t + ffi) + !t

As a general note, the goal of time series analysis is to apply a series of transformations in order to reduce
the remaining model to a white noise series. Through these transformations we address trends in the series,
aiming to be left with only a noise series.

2 Characteristics of Time Series

A complete description of time series is provided by the joint distribution function.

Definition 11. The mean function is defined as

—t = E(xt) =

ˆ ∞

−∞
xft(x)dx

—t is the expectation of the process at the given t, ft is probability density of xt .

Definition 12. The autocovariance function is defined as the second moment product

‚x(s; t) = Cov(xs ; xt) = E[(xs − —s)(xt − —t)]

for all s; t. Note ‚x(t; t) = Var(xt).
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Covariance measures the ‘linear relationship’ of random variables (it is an inner product on the space). The
following examples can be computed with the bilinearity properties of covariance.

Example 1. Consider white noise wt ∼ wn(0; ff2). Then we have

‚w (s; t) = Cov(ws ; wt) =

(
ff2; s = t

0; s ̸= t

Example 2. Consider moving average vt = 1
3 (wt+1 + wt + wt−1) with wt ∼ wn(0; ff2). Then we can verify

that

‚v (s; t) =

8>>><>>>:
1
3ff

2; s = t
2
9ff

2; |s − t| = 1
1
9ff

2; |s − t| = 2

0; |s − t| > 2

Note: Prof said this is a great exam question!

Example 3. For a random walk without drift, xt =
Pt

j=1 wj and wt ∼ wn(0; ff2), we have

‚x(s; t) = min{s; t}ff2

since the wt are uncorrelated random variables. Note Var(xt) = tff2.

Definition 13. The autocorrelation function is defined as

ȷ(s; t) =
‚(s; t)p

‚(s; s)‚(t; t)

The autocorrelation function gives a profile of the linear correlation of the series at time t. Cauchy Schwarz
implies |‚(s; t)|2 ≤ ‚(s; s)‚(t; t).

Definition 14. For multivariate time series we have the cross-variance function

‚xy (s; t) = Cov(xs ; yt)

and cross-correlation function

ȷxy (s; t) =

p
‚xy (s; t)p

‚x(s; s)
p
‚y (t; t)

This can be extended to time series with arbitrary components.

2.1 Stationary Models
Definition 15. A stationary process xt has constant mean and variance for all t.

Stationarity is defined uniquely, so there is only one way for a series to be stationary. It is preferred that
estimators of parameters do not changed over time. In many cases, stationary data can be approximated with
stationary ARMA models which we discuss later. They also avoid the problem of spurious regression.

Definition 16. A series xt is strong stationary if for any t1; t2; : : : ; tn ∈ Z where n ≥ 1 and any scalar shift
h ∈ Z, the joint distribution of both series is the same:

P (xt1 ≤ c1; · · · ; xtn ≤ cn) = P (xt1+h ≤ c1; · · · ; xtn+h ≤ cn)

We never actually know the joint distribution, but this definition allows us to make some theoretical observa-
tions about time series. The above implies

1. p(xt ≤ c) = p(xt+h ≤ c)

2. —t = —s for all s; t

3. ‚(s; t) = ‚(s + h; t + h)

It cannot be checked whether any observed time series is strong stationary. This motivates weak stationary.
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Definition 17. A process is time invariant if it does not depend on time.

Definition 18. A time series is weak stationary invariant, covariance stationary, second-order stationary
if

1. —t is constant

2. ‚(s; t) = Cov(xs ; xt) depends on s; t only by the difference |s − t|: ‚(t + h; t) = ‚(h; 0).

Proposition 1. A strong stationary series is weakly stationary. The converse is not true.

Definition 19. The autocovariance function of a stationary time series will be written as

‚(h; 0) = ‚(h) = Cov(xt+h; xt)

Note ‚(h) = ‚(−h).

Definition 20. The autocorrelation function of a stationary time series will be written as

ȷ(h) =
‚(t + h; t)p

‚(t + h; t + h)
p
‚(t; t)

=
‚(h)

‚(0)

Definition 21. The stochastic process wt is a strong white noise process with mean zero and variance ff2w
and written wt ∼ wn(0; ff2w ) if and only if it is i.i.d. with zero mean and covariance

‚w (h) = E(wtwt+h) =

(
ff2w ; h = 0

0; h ̸= 0

A weak stationary Gaussian white noise process is strongly stationary, due to uncorrelated implying independent
in this case.

Example 4. Consider moving average vt = 1
3 (wt+1 + wt + wt−1) with wt ∼ wn(0; ff2). It is stationary since

—v;t = 0.

‚v (h) =

8>>><>>>:
1
3ff

2; h = 0
2
9ff

2; h = 1
1
9ff

2; h = 2

0; h > 2

ȷv (h) =

8>>><>>>:
1 h = 0
2
3 h = 1
1
3 h = 2

0; h > 2

Example 5. xt = "t where "t ∼ i :i :d(0; 1) is weakly stationary.

Example 6. xt = t + "t where "t ∼ i :i :d(0; 1) is not weakly stationary since —t depends on t.

Example 7. Suppose Xt = A sin(t + B) where A ∼ r:v :(0; 1); B ∼ U([−ı; ı]). This process is stationary.

E(Xt) = E(A sin(t + B)) = E(A)E(sin(t + B)) = 0

‚(h) =
1

2
cos(h)

‚(h) can be verified by integrating.

Transforming Nonstationary Series

The random walk process xt = ‹t +
Pt

j=1 wj is not stationary if it has drift, since E(xt) = ‹t depends on
time. Suppose ‹ = 0 so the mean function is constant. In this case

‚(h) = Cov(xt ; xt+h) = tff2 and ȷ(h) =
Cov(xt ; xt+h)p
Var(xt)Var(xt+h)

=
1p

1 + h=t

For large t and h much smaller than t, get ‚(h) is very close to 1. We can eliminate the stationarity in a
random walk process by taking the difference of the xt :

∇xt = xt − xt−1 = "t ∼ wn(0; ff2w )
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In the presence of d unit rots, we apply d differences to xt :

∇dxt = (1− B)dxt = "t

Where B is the backwards shift Bxt = xt−1. For example, consider xt = a + bt + ct2. Then we may take
second order differences:

zt = ∇2xt = (xt − xt−1)− (xt−1 − xt−2) = 2c

for t ≥ 3. The R function diff(x, lag, differences) can be used for this. The series ∇xt can be used
to transform the time series into stationarity.

Definition 22. A series is jointly stationary if they are each stationary and

‚xy (h) = Cov(xt+h; yt) = E(xt+h − —x)(yt − —y )

is only a function of the lag. The cross correlation function of two jointly stationary series is

ȷxy (h) =
‚xy (h)p
‚x(0)‚y (0)

We again have −1 ≤ ȷxy (h) ≤ 1.

Example 8. Consider two series xt = wt + wt−1 and yt = wt − wt−1. We find the cross correlation

Definition 23. A linear process xt is defined to be a linear combination

xt = —+
∞X

j=−∞
 jwj ;

∞X
j=−∞

| j | <∞

We may verify ‚x(h) =
P∞

j=−∞  t+h t . Only need
P∞

j=−∞  2
j <∞ for process to have finite variance. Note

that the moving average is an example of a linear process.

If a time series is stationary, we may estimate the mean with x = 1
n

Pn
t=1 xt . In this case,

Var(x) =
ff2x
n

 
1 +

n−1X
h=1

(1− h=n)ȷ(h)

!

Estimators

Definition 24. The sample autocovariance is defined as

‚̂(h) =
1

n

n−hX
t=1

(xt+h − x)(xt − x)

The sum is restricted since xt+h is not available for t + h > n. This estimator is preferred than the one
dividing by n − h since it is a non-negative definite function. The sample autocorrelation is defined as

ȷ̂(0) =
‚̂(h)

‚̂(0)
=

Pn−h
t=1 (xt+h − x)(xt − x)Pn

t=1(xt − x)2

This allows us to test whether the autocorrelation is statistically significant at some lags: for n sufficiently
large, approximately we have ȷ̂(h) ∼ N(0; 1

n
). I.e. the estimator is normally distributed with

—ȷ̂(h) = 0 and ffȷ̂(h) =
1√
n

We can test H0 : ȷ(h) = 0; Ha : ȷ(h) ̸= 0. For ¸ = 0:05, have |ȷ̂(h)| ≥ 2√
n
.

• The ACF cuts off at lag h if there no spikes at lags > h in the ACF plot.

• The ACF dies down if it decreases in a steady fashion.

• If ACF dies down quickly, then the data is stationary. If it dies down very slowly, it is not stationary.
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2.2 Vector Valued Time Series
Same as regular time series, except

xt = (xt;1; : : : ; xt;p) ∈ Rp

The transpose is denoted xt . The mean is —t = E(xt) = (—t;1; : : : ; —t;p). If the process is stationary,
E(xt) = —, and has autocovariance matrix

Γ(h) = E(xt+h − —)(xt − —)′

with cross covariance functions ‚i j(h) = E(xt+h;i − —i )(xt;j − —j). Note ‚i j(h) = ‚j i (−h).

Definition 25. The sample autocovariance matrix

Γ̂(h) =
1

n

n−hX
t=1

(xt+h − x)(xt − x)′

where x = 1
n

Pn
t=1 xt . The symmetry property holds: Γ̂(h) = Γ̂(−h)′.

3 Time Series Regression and Exploratory Data Analysis

We develop regression models in univariate and multiple time series analyis. We calculate least squares esti-
mators of regression parameters, do ANOVA, and assess our parameters. Then we perform lagged regression,
and do transformations of time series to stationarity.

The multiple linear regression model relates the response x to independent variables zi with the relationship

x = ˛0 + ˛1z1 + : : :+ ˛qzq + "

where " is some error term. We model

E(x | z1; : : : ; zq) = ˛0 + ˛1z1 + : : :+ ˛qzq

The linear model is linear in the coefficients ˛1, not in zi .

Definition 26. The multiple linear regression model in time series is modelled with

xt = ˛0 + ˛t;1 + : : :+ ˛qzt;q + wt

1. xt is the dependent time series

2. zt;1; : : : ; zt;q are independent series.

3. wt for different t are iid, wn(0; ff2w ). Note this is stronger than the usual assumption.

We collect n > q observations of the time series, at various time points and predict x̂t = ˆ̨
0+ ˆ̨

1zt1+: : : ˆ̨qztq.
We describe xt as a linear combination of the other time series. We minimize the error via least squares:

Q(˛0; : : : ; ˛q) =
nX
t=1

w2
t =

nX
t=1

(xt − x̂t)
2

Then differentiate and minimize by setting

@Q

@˛i

˛̨̨
˛0;:::;˛q

= 0

When q = 1,

ˆ̨
1 =

Pn
i=1(xt − x)(zt − z)Pn

i=1(zt − z)2
; ˆ̨

0 = x − ˆ̨
zz

Exam: Should be on reference sheet.
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3.1 Matrix Form
We can write the multiple linear regression model in terms of vector valued time series/matrix form. Consider
zt ∈ Rq with component-wise independent time series zt;i . Each zt can be seen as a column vector of z .
Then for the model

xt = ˛′zt + wt wt ∼ iid(0; ff2w )

the least squares estimate is given by

ˆ̨ = (z ′z)−1z ′x =

 
nX
t=1

ztz
′
t

!−1 nX
t=1

ztxt

The minimized sum squared errors can be written

SSE =
nX
t=1

(xt − ˆ̨′zt)
2

The covariance matrix is given by
Cov( ˆ̨) = ff2wC; C = (zz ′)−1

i.e. the exterior product. The mean squared error is

MSE = s2w =
SSE

n − (q + 1)

which is an unbiased estimator for ff2w .

3.2 Hypothesis Testing and Model Selection
We may test the hypothesis ˛i = 0 for i > 0 with the test statistic

t =
ˆ̨
i˛i

sw
√
ci ;i

∼ tn−(q+1)

where ci ;i is the i-th diagonal element of the covariance matrix C. We can also test whether a subset of zi
influences xt . The reduced model is

xt = ˛0 + ˛1zt1 + : : :+ ˛r + ztr + wt

where ˛0; : : : ; ˛r are a subset of the original coefficients. Our null hypothesis is ˛r+1 = · · · = ˛q = 0. We
are testing whether the SSE deviates statistically significantly once we reduce the model, since it will always
reduce somewhat. Our null is that the subset model is correct, since we prefer more parsimonious models.

F =
(SSER − SSE)=(q − r)

SSE=(n − q − 1)
=
MSR

MSE
∼ Fq−r;n−q−1

Note: n−q−1−(n− r−1) = q− r which gives the above degrees of freedom. Reject the more parsimonious
model at level ¸ in favor of Ha if F ≥ F¸.

Sources of Variation Df Sum Sq Mean Sq F value Pr(>F)
zt;r+1;q q − r SSR MSR = SSR

q−r F0 =
MSR
MSE

etc
Error n − q − 1 SSE MSE = SSE

n−q−1

Total n − r − 1 SSE0

• The sum of squares contributed by regression (explained variation): SSR =
Pn

t=1(x̂t − x)2.

• The sum of squares contributed by error (unexplained variation): SSE =
Pn

t=1(x̂t − x̂t)
2.

• The total sum squared is SSE0 = SSR + SSE.
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• The coefficient of determination is the proportion of total explained variation is

R2 = SSR=SSE0 = 1− SSE=SSE0

.

In order to compare models we also consider the adjusted R2, which account for the number of predictors.

R2
a =

„
R − q

n − 1

«„
n − 1

n − q − 1

«
For a model with k + 1 parameters, the least squares estimator of the variance is f̂f2k = SSE(k)=n, where
SSE(k) comes from the model without intercept. Frequently we use information criteria to select the best
model with k predictors

• AIC = n log f̂f2k + 2(k + 2)

• AICC = AIC + 2(k+2)(k+3)
n−k−3

• BIC = log f̂f2k + (k + 2) log n

We prefer models with minimal information criteria.

Example 9. Consider a time series Mt which is modelled as depending on other series Tt ; Pt .

• Trend-only: Mt = ˛0 + ˛1t + wt

• Linear: Mt = ˛0 + ˛1t ++˛1Tt + wt or Mt = ˛0 + ˛1t ++˛1Pt + wt etc.

• Curvilinear: Mt = ˛0 + ˛1t ++˛1(Tt − T )2 + ˛2Pt + wt

The model simultaneously minimizing AIC and BIC is best. Note that the quadratic term in the curvilinear
model is centered, probably to account for average temperature in ˛0. Given observations for these models,
we perform F -test to see whether we can drop some predictors.

When dealing with temporal data, we also need to consider lagged variables. This predicts values of xt from
possible lags in zt . Lagged regression can be done using dynlm in R.

3.3 Transformations to Stationarity
In order to satisfy many of our assumptions, it is necessary for a series to be stationary. This is often not the
case and we often want to transform our data. To remove any change in the mean function —t , we detrend
the model by decomposing it into

xt = —t + yt

where —t is a fitted mean function, yt is the residual series. Our assumption about errors is that they follows
i id(0; ff2), which makes yt stationary.

The backshift, forward, and difference operators act on time series by

• Backshift: Bh(xt) = xt−h

• Forward: B−h(xt) = xt+h

• Difference: ∇h(xt) = (1− B)h(xt)

Often taking the first difference is more effective than detrending in order to make the series stationary. ACF
plots end up much better.

Example 10. Suppose that after differencing, the ACF plot had a significant value at h = 4. Then we model

Xt = „Xt−4 + wt

We see later that this is a “MA(4) = ARMA(0; 4)” model.
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When a model has drift, for example Xt = ‹ + Xt−1 + wt , then differencing makes complete sense in order
to get a stationary series.

Fractional differencing extends the notion of the difference operator ∇d = (1−B)d to fractional powers of
d ∈

`
− 1

2 ;
1
2

´
which still define stationary processes, especially for long memory time series.

A method to suppress large fluctuations of xt is through the Box-Cox transformations:

yt =

(
x–t −1
–
; – ̸= 0

log xt ; – = 0

which is a method of selecting the best non-linear transformation of xt in order to minimize the variance of
the errors.

Harmonic regression is used when a model contrains a periodic trend, allowing us to use trigonometric
functions of t to do detrending.

xt = ˛0 + ˛1t + ˛2 sin

„
2ıt

L

«
+ ˛3 cos

„
2ıt

L

«
+ wt

Adding trigonometric terms with different frequencies can help with complex seasonality patterns.

3.4 Filtering and Smoothing
Filtering/smoothing helps discover useful trends and seasonal components.

Definition 27. The moving average smoother is

mt =
kX

j=−k
ajxt−j

where
Pj

j=−k aj = 1; aj > 0 makes a symmetric weighted moving average.

Definition 28. The kernel smoothing is

mt =
nX
i=1

wi (t)xi

where wi = K( t−i
b
)=
Pn

j=1K( j−i
b
) are weights, K is some kernel function. The wider the bandwidth b, the

smoother the model.

4 ARIMA Models

We move into the core of time series analysis. ARMA models are defined, autocorrelation functions are
derived, and stationarity, causality, and invertibility of series are evaluated. The Box-Jenkins methodology
requires that the model used in describing and forecasting a series is stationary and invertible

Definition 29. xt is stationary if it remains in statistical equilibrium with properties that do not change
over time. xt is invertible if its weights do not depend on time, and xt can be expressed as a function of
previous observations xt−1; : : :.

Definition 30. The partial correlation at lag k of xt is

Corr(xt+k − x̂t+k ; xt − x̂t)

where x̂t+k = ˛1xt+k−1 + ˛k−1zt+1 and x̂t = ˛1xt+1 + ˛k−1zt+k−1. Note coefficients are same but reversed.
The partial autocorrelation allows us to detect whether a dependence at lag k is appropriate, and is part of
the Box-Jenkins methodology.
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4.1 Auto-Regressive Models
Once trends and seasonal effects are removed from a model, we might construct a linear model for a series
with autocorrelation.

Definition 31. A time series xt with zero mean is autoregressive process of order p, denoted AR(p) if it
can be written

xt = ffi1xt−1 + ffi2xt−2 + : : : ffipxt−p + wt

for ffip ̸= 0, wt ∼ wn(0; ff2w ). With backshift operator, we can write this as a polynomial of order p in B,

Φp(B)xt = wt

and Φp(B) = 1− ffi1B − ffi2B
2 − : : :− ffipB

p; ffip ̸= 0. This is the characteristic polynomial of order p.

The second expresssion in terms of characteristic polynomial is preferred, we will see it simplifies our under-
standing later. If the mean — of xt , we may replace xt by xt − —, and rewrite as

xt = ‹ + ffi1xt−1 + ffi2xt−2 + : : : ffipxt−p + wt

with ‹ = —(1− ffi1 − ffi2 − · · · − ffip).

Example 11. The AR(2) model xt = 1:5 + 1:2xt−1 − 0:5xt−2 + wt is

xt − — = 1:2(xt − —)− 0:5(xt − —) + wt

Solving for — with 1:5 = —(1− 1:2− 0:5), we see — = 5.

Suppose we fit an AR(h) model. In order to decide whether the fit model is a good fit, we check:

• The plot of the time series does not show any increase in variance or trend.

• The ACF plot must decay exponentially, have a wavelet form, or be oscillating (i.e. sign alternates)
about 0.

• The PACF plot can be used to detect the correct order for the autoregressive model.

4.2 Causal Conditions
We study whether a process can be completely described by its previous values.

Definition 32 (Causal conditions for AR(1)). The autoregressive process of order 1, AR(1), xt = ffixt−1 +wt
is a causal process if it is stationary with values that are not depending on the future. In this case, the
absolute value of the root of 1− ffiz = 0 must lie outside the unit circle. AR(1) process is causal if

|z | =
˛̨̨̨
1

ffi

˛̨̨̨
> 1 ⇐⇒ |ffi| < 1

A causal process is stationary, but a stationary process is not necessarily causal.

Example 12. 1. (1− 0:4B)xt = wt is causal since the root of (1− 0:4z) = 0 satisfies |z | = |1=0:4| > 1.

2. (1 + 1:8B)xt = wt is not causal since |1=ffi| < 1.

Definition 33 (Causal conditions for AR(2)). The AR(2) model

xt = ffi1xt−1 + ffi2xt−2 + wt

is causal when the roots of the characteristic polynomial

Φ2(z) = 1− ffi1z − ffi2z
2

lie outside the unit circle ˛̨̨̨
˛ffi1 ±

p
ffi21 + 4ffi2

−2ffi2

˛̨̨̨
˛ > 1

Necessary and sufficient conditions for this are

|ffi2| < 1 ffi1 + ffi2 < 1 ffi2 − ffi1 < 1

11



Example 13. 1. xt = 1:1xt−1 − 0:4xt−2 is causal.

2. x + t = 0:6xt−1 − 1:3xt−2 + wt is not stationary (necessary and sufficient conditons).

Definition 34 (Causal conditions for AR(p)). The autoregressive process of order p, AR(p),

xt = ffi1xt−1 + ffi2xt−2 + : : : ffipxt−p + wt

is a causal process if all roots of the characteristic polynomial

Φp(z) = 1− ffi1z − ffi2z
2 − : : :− ffipz

p; ffip ̸= 0

lie outside the unit circle.

The function polyroot(a), where a is a vector with polynomial coefficients, can be used to find the roots.

4.3 Moving Average Models
These are analogous to autoregressive models, except moving average models depend on white noise terms
instead of terms of the series itself. There is an analogous characteristic polynomial Θq(B), with the same
root condition on invertibility instead of causality.

Definition 35. A time series xt with zero mean is a moving average process of order q, denoted MA(q),
if it can be written

xt = „1wt−1 + „2wt−2 + : : : „qwt−q

where wt ∼ wn(0; ff2w ) and „q ̸= 0. This process has characteristic polynomial xt = Θq(B)wt where

Θq(B) = 1 + „1B + „2B
2 + : : : „qB

q; „q ̸= 0

If the roots zi of the polynomial Θq(z) satisfy |zi | > 1 for all i , then the process MA(q) is invertible.

Consider the MA(1) process. The autocorrelation function ȷ(h) =
„

1 + „2
does not change after replacing „

by 1=„. That is

xt = wt + „wt−1 and xt = wt +
1

„
wt−1

have the exact same autocorrelation function is ȷ(h) (show later). This is why invertibility matters: if the
polynomial Θq(z) has all roots lying outside the unit circle, then the noise coefficients „1; : : : ; „q are uniquely
identified.
Compare the two models:

• AR(p) : Φp(B)xt = wt

• Autoregressive process is always invertible, but not always causal.

• MA(q) : xt = Θq(B)wt

• Moving average process is always causal, but not always invertible.

We check partial autocorrelation, autocorrelation plots. Out of a set of candidate models, we use AIC and
BIC in order to perform model selection for AR and MA.

4.4 Auto-Regressive Moving Average Models
Definition 36. A time series xt is an auto-regressive moving average (ARMA) of order (p; q) if it can be
written

xt =

pX
i=1

ffiixt−i +

qX
j=1

„qxt−q

also written as
Φp(B)xt = Θq(B)wt

If xt has non-zero mean, we can rewrite the above with Φp(B)(xt − —) = Θq(B)wt . Can also be written in
summation form with a constant term ‹ = —(1− ffi1 − · · · − ffip). This is the intercept from arima().

12



The ARMA satifies stationarity, invertibility, identifiability conditions if

• Stationary: Same condition as for AR(p) on Φp(z).

• Invertible: Same condition as for MA(q) on Θq(z).

• Identifiable: The model is not redundant. Φp(z) and Θq(z) have no common roots.

Example 14. The ARMA(1; 2) model xt = 0:2xt−1 + wt − 1:1wt + 0:18wt−2 can be written as

(1− 0:2B)xt = (1− 1:1B + 0:18B2)wt =⇒ xt = (1− 0:9B)wt

which is really an ARMA(0; 1) = MA(1) model. That is we can find the non-redundant expression by removing
common roots of the characteristic polynomials.

Definition 37. The MA(q) process xt = Θq(B)wt where

Θq(B) = 1 +

qX
j=1

„jB
j

and wt ∼ wn(0; ff2w ) is invertible if it can be represented as a convergent infinite AR form: AR(∞). Multiply
both sides of above by Θq(B)

−1 to get
wt = Θq(B)

−1xt

Recall combinatorics and writing the above as a product of geometric series (factor the polynomial). We
denote

wtΘq(B)
−1xt = Π∞(B)xt = 1−

∞X
i=1

ıiB
i = −

∞X
i=0

ıiB
i

Note we are ensured that
P∞

i=0 |ıi | <∞ with ı0 = −1.

Recall the definition of a linear process as defined in Section 2. Above we have shown that xt can be written
as an infinite sum of white noise series, and is therefore a linear process.

Example 15. Consider xt = (1 + „B)wt . Then we have the geometric series

wt =
1

1− (−„B)xt =
∞X
k=0

(−1)k„kBkxt = Π∞(B)xt

This gives the expression
ıi = (−1)i+1„i

and particularly

xt =
∞X
k=1

(−1)i+1„iBixt + wt

Note why we need the condition for all the roots of Θp to be within the unit circle: we want each geometric
series in the product to converge absolutely.

Example 16. Suppose x = wt + 0:4wt−1. This is invertible since |„| = 0:4 < 1. We can then write

xt = wt + 0:4xt−1 − 0:42xt−2 + · · ·

In general we know Π∞(B) = Θq(B)
−1, so the coefficients ıi can be obtained by equating

1 = Π∞(B)Θq(B)

= 1− (ı1 − „1)B − (ı2 + „1ı1 − „2)B
2 · · ·

− (ıj + „1ıj−1 + · · ·+ „q−1ıj−q+1 + „qıj−q)B
j

All non-constant coefficients are 0,

ıj = −„1ıj−1 − · · · − „qıj−q

Now what if we reverse this and do the same for a causal process?

13



Definition 38. The AR(p) process
Φp(B)xt = wt

where Φp(B) = 1 −
Pp

j=1 ffijB
j , wt ∼ wn(0; ff2w ) is causal if it can be represented as a convergent infinite

MA(∞) form:
xt = Φp(B)

−1wt = Ψ∞(B)wt

where Φp(B)
−1 = Ψ∞(B) = 1 +

P∞
k=1  kB

k .

Using the same condition as before,
1 = Ψ∞(B)Φp(B)

gives us  j = ffi1 j−1 + : : :+ ffip j−p. This Ψ is known as the impulse response sequence.

14



5 ARIMA Models Continued

Last lecture we discussed the models

• ARMA(p; 0) = AR(p): Φp(B)xt = wt and xt = Ψ∞(B)wt if this process is causal. The process is
causal if the series representation of 1=Φp(B) converges absolutely, which occurs when the roots of
Φp(z) lie outside the unit circle. In this case, it is also denoted as MA(∞).

Ψ∞(B) = 1 +  1B +  2B
2 + : : :

• ARMA(0; q) = MA(p): xt = Θq(B)wt and wt = Π∞(B)xt if this process is invertible. The process is
invertible if the series representation of 1=Θq(B) converges absolutely, which occurs when the roots of
Θq(z) lie outside the unit circle. In this case, it is also denoted as AR(∞).

Π∞(B) = 1− ı1B − ı2B
2 − : : :

• ARMA(p; q) means that
Φp(B)xt = Θq(B)wt

The convergence follows from the partial fraction decomposition of the reciprocal of the characteristic poly-
nomials.

Consider causal conditions for the ARMA(p; q) model. We may write

xt =
Θq(B)

Φp(B)
wt = Ψ∞(B)wt

Similar to the pure AR model situation, the  i coefficients may be calculated by

Θq(B) = Φp(B)Ψ∞(B)

and equating coefficients, we are left with

 j = ffi1 j−1 + · · ·+ ffip j−p + „j

Now consider similar invertible conditions. Then

wt =
Φp(B)

Θq(B)
xt = Π∞(B)xt

Using the similar equality
Θq(B)Π∞(B) = Φp(B)

we find
ıj = −„1ıj−1 − · · · − „pıj−p + ffij

The coefficients of Φ∞(B) are called the impulse response coefficients.

5.1 The ACF of an Autoregressive Process

ACF of AR(1)

Suppose we have (1− ffiB)xt = wt . When |ffi| < 1 we may write

xt = (1 + ffiB + ffi2B2 + : : :)wt =
∞X
j=1

ffijwt−j

which is the MA(∞) Wold representation. This representation is useful because white noise variables are
easy to deal with: each of the terms are uncorrelated. The below holds with series manipulations justified by
|ffi| < 1.

1. E(xt) =
P∞

i=0 ffi
iE(xt−i ) = 0

15



2. ‚(0) = Var(xt) =
P∞

i=0 E(ffi
2ix2t−i ) = ff2w

P∞
i=0 ffi

2i =
ff2w

1− ffi2

3. ‚(h) = E(xtxt+h) = ff22
P∞

i=0 ffi
i+hffii = ff2w

ffih

1− ffi2

4. ȷ(h) = ffi(h)=ffi(0) = ffih and ȷ(h) = ffiȷ(h − 1)

These highlight some of our stationarity checks during model diagnostics. The ACF plot should have expo-
nential decay towards 0, oscillating decay, or sine/cosine like decay.

ACF of AR(2)

Consider the AR(2) process
xt = ffi1xt−1ffi2xt−2 + wt

Multiply the sides by xt−h and use linearity of expectation to get

‚(h) = E(xtxt−h) = ffi1E(xt−1xt−h) + ffi2E(xt−2xt−h)

= ffi1‚(h − 1) + ffi2‚(h − 2)

where we used E(wtxt−h) = E(wt
P∞

j=0  jwt−h−j) = 0. Dividing through by ‚(0) we get the difference
equation

ȷ(h)− ffi1ȷ(h − 1)− ffi2ȷ(h − 2) = 0

Using ȷ(0) = 1; ȷ(1) = ȷ(−1) we have initial conditions

ȷ(1) =
ffi1

1− ffi2
ȷ(2) =

ffi21
1− ffi2

+ ffi2

ACF of AR(p)

For a general AR(p) process, we can calculate the autocorrelation function solving

ȷ(h)− ffi1ȷ(h − 1)− · · · − ffipȷ(h − p) = 0; h ≥ p

by following the same process as the A(2) case. For the AR(p) process we may describe the above as
Dp(B)ȷ(h) = 0 for some p-th order polynomial Dp. Consider Dp(z) = 0 (z can be thought of as an initial
state)

• If all roots are real, ȷ(h) dampens exponentially as h → ∞.

• If some roots are complex, then they will be in conjugate pairs and ȷ(h) will dampen exponentially in
a sinusoidal fashion as h → ∞.

• If roots are only complex, the time series will appear to be cyclic.

FINISH ! with difference equation approach. ALSO eigenvalues !

5.2 Partial Autocorrelation Function
Definition 39. Consider random variables X; Y; Z. The partial correlation between X; Y given Z is the
correlation of the residuals of X; Y regressed on Z. That is, for X̂ (X regress on Z) and Ŷ (Y regress on Z),
it is the correlation of

ȷXY |Z = Corr(X − X̂; Y − Ŷ )

We are “removing the effect of Z”.

Definition 40. The partial autocorrelation of stationary process xt denoted ffihh for h = 1; 2; : : : is

ffihh = Corr(xt+h − x̂t+h; xt − x̂t); h ≥ 2

and ffi11 = Corr(xt+1; xt). The values are regressed on xt+1; : : : ; xt+h−1, i.e. the linear dependence on these
is removed. If the process is Gaussian:

ffihh = Corr (xt+h; xt | xt+1; : : : ; xt+h−1)

16



PACF of AR(1) Process

Consider xt = ffixt−1 + wt , |ffi| < 1. By definition, ȷ(1) = ffi. Calculate ffi22:

1. Consider the regression xt+2 on xt+1, say x̂t+2 = ˛xt+1.

2. Minimize ˆ̨ = argminE(xt+2 − x̂t+2)
2.

E(xt+2 − x̂t+2)
2 = ‚(0)− 2˛‚(1) + ˛2‚(0) =⇒ ˆ̨ = ‚(1)=‚(0) = ffi

3. Analogously, consider the regression of xt on xt+1, x̂t = ˛xt+1. Minimizing E(xt − x̂t)
2,

ˆ̨ = ffi

as well.

4. By causality,

ffi22 = Corr(xt+2 − x̂t+2; xt − x̂t)

= Corr(xt+2 − ffixt+1; xt − ffixt)

= Corr(wt ; xt − ffixt−1) (uncorrelated noise)
= 0

For a given lag h, a general method for finding the autocorrelation function ffihh for any stationary process
with autocorrelation function ȷ(h) satisfy the Yule-Walker equations.

ȷ(j) = ffih1ȷ(j − 1) + ffih2ȷ(j − 2) + · · ·+ ffihhȷ(j − h)

and
ffih;j = ffih−1;j − ffih;hffih−1;j

j = 0; : : : h − 1,giving a system of h linear equations. Solving these equations gives ffihh for any stationary
process.

Proposition 2. For an AR(p) process,

ffihh =

(
ffih; h ≤ p

0; h > p

The sample autocorrelation is calculated by Levinson-Durbin equations1

ffihh =
ȷ(h)−

Ph−1
j=1 ffih−1;jȷ(h − j)

1−
Ph−1

j=1 ffih−1;jȷ(j)

Using ffi11 = ȷ(1), get

ffi22 =
ȷ22 − ffi11ȷ(1)

1− ffi11ȷ(1)
=
ȷ(2)− ȷ(1)2

1− ȷ(1)2

We can iterate to get ffihh. Replacing ȷ with ȷ̂ we may find ffihh. Under the assumption that AR(p) is the
correct model, then

ffihh ∼ N(0; 1=n)

The estimator is actually t-distributed but we approximate as normal for large enough n.
1Will show up on exam.
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5.3 Autocorrelation of a Moving Average Process

ACF of MA(1)

Consider the process xt = wt + „wt−1.

1. E(xt) = 0

2. ‚(0) = Var(xt) = E(w2
t + 2„wtwt−1„

2w2
t−1) = ff2w

`
1 + „2

´
3. The autocovariance is independent of h:

‚(h) = E(wtwt+h) + „E(wt−1wt+h) + „E(wtwt+h−1) + +„2E(wt−1wt+h−1)

‚(h) =

8><>:
(1 + „2)ff2w ; h = 0

„ff2w ; h = ±1

0; else

4. The autocorrelation is also independent of t.

ȷ(h) =

8><>:
1; h = 0
„

1+„2 ; h = ±1

0; else

ACF of MA(q)

For a general MA(q) process,
xt = Θq(B)wt

with Θq having coefficients „i .

1. E(xt) = 0

2. ‚(0) = Var(xt) = ff2w
`
1 + „21 + · · · „2q

´
= ff2w

Pq
i=0 „

2
i

3. The autocovariance is independent of h:

‚(h) =

(
ff2w (

Pq
i=h „i„i−h); h = 0;±1; : : : ;±q

0; else

4. The autocorrelation is also independent of t.

ȷ(h) =

8<:
Pq

i=h „i„i−hPq
i=0 „

2
i

; h = 0;±1; : : : ;±q

0; else

PACF of MA(1)

Consider xt = wt + „wt−1; |„| < 1. The partial autocorrelation function is given by

ffihh = − (−„)h(1− „2)

1− „2(h+1)

Therefore the theoretical PACF will have one of

• Damped exponential decay.

• Damped oscillating exponential decay.

• Damped sinusoidal exponential decay.

Note: PACF for MA models behaves like ACF for AR models. ACF for MA models behaves like PACF for
AR models. Since an invertible ARMA model has an infinite AR representation,the PACF for MA models will
not cut off.

A question about ACF/PACF of MA/AR or an ARMA(1; 1) model will probably show up on the final.
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ACF of ARMA(1; 1)

Consider the causal ARMA (1; 1)2 model xt = ffixt−1 + wt + „wt−1; |ffi| < 1. Then

‚(h) = Cov(xt+h; xt) = ffiE(xt+h−1xt) + E(wt+hxt) + „E(wt+h−1; xt)

Recall

E(wt+hxt) =

(
 0ff

2
w ; h = 0

0 else
E(wt+h−1xt) =

8><>:
 1ff

2
w ; h = 0

 0ff
2
w ; h = 1

0 else

Therefore

‚(h) =

8><>:
ffi‚(1) + ff2w (1 + ffi„ + „2) h = 0

ffi‚(0) + ff2w„ h = 1

ffi‚(h − 1) h ≥ 2

Note the iterative form ‚(h) = ffih−1‚(1) for h ≥ 2, with initial conditions given by the system of equations(
‚(0) = ffi‚(1) + ff2w (1 + ffi„ + „2)

‚(1) = ffi‚(0) + ff2w„

This gives

‚(0) = ff22
1 + 2ffi„ + „2

1− ffi2
‚(1) = ff22

(1 + ffi„)(ffi+ „)

1− ffi2

and for h ≥ 1

‚(h) = ff22
(1 + ffi„)(ffi+ „)

1− ffi2
ffih−1

5.4 Summary for Model Diagnostics
These ACF/PACF results we have shown in the past two classes can be summarized in the below table. The
model diagnostics we discussed make sense in this context.

Model ACF PACF
White noise All zeros All zeros
AR(p) Tails off as exponential decay Spikes through lag p, cuts off
MA(q) Spikes through lag p, cuts off Tails off as exponential decay
ARMA(p; q) Decay beginning at lag q Decay beginning at lag p
Random walk No decay to zero All zero after lag 1

2Slide 71 of Module 4 will appear on final.
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6 Time Series Diagnostics

We perform Dickey-Fuller tests for non-stationarity, address regression with autcorrelated errors, compute
forecasts for ARMA models, and diagnose fitted models.

6.1 Test Statistics for Time Series Models
For a simple AR(1) model xt = ffixt−1 + wt , the model is stationary when |ffi| < 1 and non-stationary when
|ffi = 1|. In order to avoid over-differencing, we might want to do a hypothesis tesk of whether this is a
random walk. Overdifferencing AR(1) may lead to ARMA(1; 1). The regression model can be written with
first difference operator

∆xt = (ffi− 1)xt−1 + wt = ‹xt−1 + wt

The model can be estimated and testing for a unit root (i.e. random walk when ‹ = 0) by

H0 : ‹ = 0 or H1 : ‹ < 0

I.e. the null hypothesis is that the series is non-stationary. This is the Dickey-Fuller unit root test. There
are three versions:

1. ∆xt = ‹xt−1 + wt : unit root without drift and without trend

2. ∆xt = a0 + ‹xt−1 + wt : unit root test with drift and without trend

3. ∆xt = a0 + a1t + ‹xt−1 + wt

Under the null hypothesis, then it can be shown

ffi ∼ N

„
ffi;

1

n
(1− ffi2)

«
under the null this gives ffi ∼ N(1; 0) which does not make sense. Philips showed:

n(ffi− 1) →d (ffl2
1 − 1)=2´ 1

0
W 2(t)dt

where W (t) is Brownian motion on [0; 1].

We reject H0 if n(ffi− 1) ≤ d for d being the tabeled value of the Dickey Fuller unit toot test statistics.

Example 17. The AR(1) model x t = 0:946xt−1 where n = 34. Then the Dickey-Fuller test statistic is

n(ffi− 1) = 34(0:946− 1) = −1:836

The d statistic is ¸ = −1:95. Since −1:836 > d , we do not reject H0, so there exists a unit root.

If xt has a unit root, then ∆xt = xt − xt−1 will be stationary (think of random walk).
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6.2 Forecasting
Forecasting is probably the most important topic in time series. The goal is to predict future values of xt
assuming we know x1:n = {x1; : : : ; xn}. We first consider

xnn+m = E(xn+m | x1; : : : ; xn) =
nX
k=0

¸kxk

the notation xnn+m means “given n observations, predict n + m-th observation“. The ¸i depend on n;m but
we do not include this in the notation for now. For example, if n = m = 1 then

x12 = ¸0 + ¸1x1

Linear predictors of this form that minimize

Q = E(xn+m − xnn+m)
2 = E

 
xn+m −

nX
k=0

¸kxk

!2

are best linear predictors.

Proposition 3. Given x1; : : : ; xn, the best linear predictor xmn+m =
Pn

k=0 ¸kxk is found by solving

E
`
(xn+m − xnn+m)xk

´
= 0 for each k = 0; 1; : : :

These are the prediction equations and are used to solve for coefficients ¸0; : : : ; ¸n. The proposition is
shown by minimizing with @Q=@aj = 0. If the series is stationary, and E(xt) = — = E(xnn+m), then by taking
expectations we see

— = ¸0 +
nX
k=1

¸k—

so

xnn+m = —+
nX
k=1

¸k(xk − —)

The ¸k can then be though of as the weight of the standard error at each observed time step xk .

1 Step Ahead Prediction

Definition 41. The BLP of the one step ahead predictor can be written

xnn+1 = ffin1xn + ffin2xn−1 + · · ·+ ffinnx1 = ffi′n · x

The dependence of the coefficients on n is shown.

These coefficients satisfy

E

0@0@xn+1 −
nX
j=1

ffinjxn+1−j

1A xn+1−k

1A = 0

by Proposition 3 and since E(xi ) = 0, since we can absorb the mean into a constant term. This can be
expanded and expectations taken in order to be written

nX
j=1

ffinj‚(k − j) = ‚(k)

As a matrix, 3

Γnffin = ‚n

3Bring on formula sheet.
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where Γn = {‚(k − j)}nj;k=1 is an n × n symmetric matrix and ‚n = (‚(1); : : : ; ‚(n)). There are the Yule-
Walker equations. 2666664

‚(1)
‚(2)
‚(3)

...
‚(n)

3777775 =

2666664
‚(0) ‚(1) ‚(2) · · · ‚(n − 1)
‚(1) ‚(0) ‚(1) · · · ‚(n − 2)
‚(2) ‚(1) ‚(0) · · · ‚(n − 3)

...
...

...
. . .

...
‚(n − 1) ‚(n − 2) ‚(n − 3) · · · ‚(0)

3777775 ·

2666664
ffin1
ffin2
ffin3
...
ffinn

3777775
We may therefore estimate ffin = Γ−1

n ‚n. The mean one step ahead predictor is

P nn+1 = E(xn+1 − xnn+1)
2 = ‚(0)− ‚Tn Γ

−1
n ‚n

since xnn+1 = ffiTn x

Example 18 (Prediction for an AR(2)). Consider the AR(2) process xt = ffi1xt−1 + ffi2xt−2 + wt . with
observation x1.

• With one observation x1, the one step ahead prediction of x2 is

x12 = ffi11x1 = ‚(1)=‚(0)| {z }
1D Yule-Walker

x1 = ȷ(1)x1

• With two observations x2, the one step ahead prediction of x2 is given by solving

ffi21‚(0) + ffi22‚(1) = ‚(2) and ffi21‚(1) + ffi(22)‚(0) = ‚(2)

Then

ffi2 =

»
‚(0) ‚(1)
‚(1) ‚(0)

–−1 »
‚(1)
‚(2)

–
Since E[(x3 − ffi1x2 + ffi2x1)xk ] = E(w3xk) = 0 for k = 1; 2, we have ffi21 = ffi1; ffi22 = ffi2. We can also verify
ffin1 = ffi1; ffin2 = ffi2. Therefore

xnn+1 = ffi1xn + ffi2xn−1 for n ≥ 2

If the series is a causal AR(p) process then for n ≥ p we have

xnn+1 = ffi1xn + ffi2xn−1 + : : :+ ffipxn−p+1

where the justification is the same as the above example.

The Levinson-Durbin Algorithm

Inverting Γ is computationally expensive for large n. We can use the Levinson-Durbin Algorithm which is an
iterative approach for computing this value.

ffi00 = 0; R0
1 = ‚(0)

For n ≥ 1,

ffinn =
ȷ(n)−

Pn−1
k=1 ffin−1;kȷ(n − k)

1−
Pn−1

k=1 ffin−1;kȷ(k)

and P nn+1 = P n−1
n (1− ffi2nn). In general the standard error of the one step ahead forecast is the square root of

P nn+1 = ‚(0)
nY
j=1

(1− ffi2j j)

m Step Ahead Prediction

Definition 42. The m step ahead prediction where m ≥ 1 is

xnn+m = ffi
(m)
n1 xn + ffi

(m)
n2 xn−1 + · · ·+ ffi(m)

nn x1 = ffi(m)′

n · x

all results for this are very similar to the one step ahead case.
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Innovations Algorithm

For a time series process xt , the innovation is defined as a residual for the one step ahead estimator:

xt − x t−1
t ; for t = 1; 2; : : : n

For the MA(n) process, xt =
Pn

j=1 „jwn−j where wt ∼ wn(0; ff2w ). The one step ahead predictors x tt+1 and
their mean squared errors P tt+1 can be calculated iteratively as

x01 = 0; P 0
1 = ‚(0)

x tt+1 =
tX
j=1

„tj(xt+1−j − x t−jt+1−j)

P tt+1 = ‚(0)−
t−1X
j=0

„2t;t−jP
j
j+1
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7 ARMA Forecasting

Assume xt is a causal, invertible ARMA(p; q) process

Φp(B)xt = Θq(B)wt

where E(xt) = 0, since we may replace x ′t = xt − —. There are two types of forecasts

1. xnn+m = E(xn+m | xn; xn−1; : : : ; x1), the minimum mean square predictor based on x1; : : : ; xn.

2. x̃n+m = E(xn+m | xn; xn−1; : : : ; x1; x0; : : :), the xn+m predictor based on infinite past data.

These are generally not the same, and for large amounts of data, x̃n+m will provide a good approximation.
To see this, write xn+m in the causal form

xn+m =
∞X
j=0

 jwn+m−j

Taking conditional expectations, and wt = 0 when t > n,

x̃n+m =
∞X
j=m

 jwn+m−j

The residual satisfies

xn+m − x̃n+m =
m−1X
j=0

 jwn+m−j =⇒ P nn+m = E(xn+m − x̃n+m)
2 = ff2w

m−1X
j=0

 2
j

The covariance satisfies

E[(xn+m − x̃n+m)(xn+m+h − x̃n+m+h)]
2 = ff2w

m−1X
j=0

 j j+h

As m → ∞, the mean square prediction satisfies

P nn+m → ff2w

∞X
j=0

 2
j = ‚x(0) = ff2x

From the model in its invertible form

wn+m =
∞X
j=0

ıjxn+m−j

We have

x̃n+m = −
m−1X
j=1

ıj x̃n+m−j −
∞X
j=m

ıjxn+m−j

which may be calculated recursively in m.

Definition 43. The truncated predictor is written as

x̃nn+m = −
m−1X
j=1

ıj x̃
n
n+m−j −

n+m−1X
j=m

ıjxn+m−j

and may also be calculated recursively in m.

Definition 44. For an ARMA(p; q) model the truncated predictor is written

x̃nn+m = ffi1x̃
n
n+m−1 + : : :+ ffip x̃

n
n+m−p + „1w̃

n
n+m−1 + : : :+ „qw̃

n
n+m−q

where we consider
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• x̃nt = xt for 1 ≤ t ≤ n

• x̃nt = 0 for t ≤ 0

• w̃nt = 0 for t ≤ 0; t > n

• wnt = Φp(B)x̃
n
t − „1w̃

n
t−1 − : : :− „qw̃

n
t−q for 1 ≤ t ≤ n.

Example 19 (ARMA(1,1) predictor). Consider xn+1 = ffixn+wn+1 + „wn. Based on the truncated predictor,

x̃nn+1 = ffixn + „wn

and for m ≥ 2, x̃nn+m = ffixn. This may be calculated recursively, by setting w̃n0 = 0; x0 = 0 and

w̃nt = xt − ffixt−1 − „w̃nt−1

The approximate forecast variance becomes

P nn+m = ff2w

„
1 +

(ffi+ „)2(1− ffi2(m−1))

1− ffi2

«

8 Estimation

Assume n observations x1; : : : ; xn from a causal, invertible, Gaussian ARMA(p; q) process

xt = ffi1xt−1 + : : :+ ffipxt−p + wt + „1wt−1 + : : :+ „qwt−q

where the parameters p; q are known. Later we discuss how they are determined, which is typically through
fitting different orders which minimize AIC, BIC.

Consider the AR(p) model. Multiplying by xt−h, we get the p + 1 Yule-Walker equations

ff2w = ‚(0)− ffi1‚(1)− : : :− ffip‚(p)

‚(h) = ffi1‚(h − 1) + : : :+ ffip‚(h − p)

In matrix notation, this is written
Γpffi = ‚p ff2w = ‚(0)− ffi · ‚p

Using the method of moments we replace ‚(h) by ‚̂(h) to get the Yule-Walker estimators.

ffi = R̂−1
p ȷ̂p f̂f2w = ‚̂(0)[1− ȷ̂pR̂

−1
p ȷ̂p]

Proposition 4. The asymptotic behaviour of the Yule-Walker estimators in the case of causal AR(p) processes
is √

n(ffi− ffi) →d N(0; ff2wΓ
−1
p ) and f̂f2w →p ff2w

Proposition 5. The asymptotic behaviour of the partial autocorrelation satisfies
√
nffihh → N(0; 1)

The Levinson-Durbin algorithm can be used to calculate ffi without inverting Γ̂p by replacing ‚(h) with ‚̂(h).
We iteratively calculate ffi.

Example 20. Suppose ‚̂(0) = 8:903 with ȷ̂(1) = 0:849 and ȷ̂(2) = 0:519. Then

ffi =

»
1 0:849

0:849 1

–−1 »
0:849
0:519

–
=

»
1:463
−0:723

–
Using proposition 3, the covariance matrix of ffi is

1

144

1:187

8:903

»
1 0:849

0:849 1

–−1
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8.1 Method of Moments
Example 21 (MA(1)). For the MA(1) process xt = wt + „wt−1, we write

xt =
∞X
j=1

(−„)jxt−j + wt

Then ȷ̂(1) = „̂=(1 + „̂2), and we estimate „̂ by solving the above equation. When |ȷ̂(1)| < 1
2 ,

„̂ =
1−

p
1− 4ȷ̂(1)2

2ȷ̂(1)

Asymptotically,

„̂ ∼ AN
„
„;

1 + „2 + 4„4 + „6 + „8

n(1− „2)2

«

8.2 Maximum Likelihood
Consider the causal AR(1) model xt = —+ ffi(xt−1 − —) + wt . Given data x1; : : : ; xn, then

L(—; ffi; ff2w ) = f (x1; : : : ; xn | —; ffi; ff2w )
= f (x1)f (x2 | x1) · · · f (xn | xn−1)

= f (x1)
nY
t=2

fw ((xt − —)− ffi(xt−1 − —))

Where fw is the density of wt , so fw (xt | xt−1) is a normal density. Expanding this, we see

= (2ıff2w )
−n=2(1− ffi2)−1=2 exp

„
−S(ffi; —)

2ff22

«
Where S is the sum of squares, or the square prediction error

S(—; ffi) = (1− ffi2)(x1 − —2) +
nX
t=2

[(xt − —)− ffi(xt−1 − —)]2

S(—; ffi) is the unconditional sum of squares, and the unconditional least squares estimate is obtained by
minimizing S. From this, the MLE of ff2w is given by

f̂f2w = S(—̂; ffi)=n

The conditional likelihood is taken by conditioning on the initial observation

L(—; ffi; ff2w | x1) = (2ıff2w )
−(n−1)=2(1− ffi2)−1=2 exp

„
−S(ffi; —)

2ff22

«
and f̂f2w = S(—̂; ffi)=(n − 1).

For general AR(p) models the same process for maximum likelihood estimates is followed. For general ARMA
models, the likelihood is difficult to derive explicitly, and is typically written as a function of the innovation
xt − x t−1

t . A common numerical algorithm for minimizing S(—; ~ffi; ~„) in an ARMA(p; q) model is with the
Newton-Raphson algorithm.

8.3 Asymptotics of some distributions

8.4 ARIMA Models
Definition 45. A time series with zero mean xt is called Autoregressive-Integrated-Moving average of
order (p; d; q) denoted ARIMA(p; d; q) if the d-th difference of xt is an ARMA (p; q) process. That is xt is
ARIMA(p; d; q) if

Φp(B)∇dxt = ‹ +Θq(B)wt

where ‹ = —(1− ffi1 − · · · − ffip), Φp;Θq, and ∇d = (1− B)d as before.
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Example 22. • ARIMA(1; 1; 0) : xt = ffixt−1 + xt−1 − ffixt−2 + wt = (1− ffiB)(1− B)xt = wt

• ARIMA(1; 1; 1) : (1− ffiB)(1− B)xt = (1 + „B)wt

• ARIMA(1; 2; 2) : (1− ffiB)(1− B)2xt = (1 + „1B + „2B
2)wt

There are two main steps to verify models after applying transformations.

• Goodness of fit: t-tests, AIC, BIC, SIC, likelihood ratio tests for adding and removing parameters to
the model.

• Residuals: We assume the series is stationary with Gaussian white noise innovations. Residuals should
look like white noise series.

• If the appropriate ARMA model is chosen there will be theoretically zero autocorrelation in the errors.

• To check the frequency of ARMA fitted model, we can use autocorrelation function (ACF/PACF) of
the innovations, or standardized innovations:

et =
xt − x̂ t−1

tp
P̂ t−1

A good check on correlation structure is to plot sample correlations and ensure they do not fall outside
of ±2=

√
n.

In the (et) series,
H0 : ȷ(h) = 0; Ha : ȷ(h) ̸= 0

the null hypothesis is that ȷ(h) = 0, for all h = 1; : : : ; m. Typically m ≈
√
n. The alternative hypothesis is

ȷ(h) ̸= 0. Recall

ȷ̂(h) =

Pn
t=h+1 etet−hPn

t=1 e
2
t

8.5 Test statistics
In order to test uncorrelatedness at individual lags h = 1; : : : ; m, there are two portmanteau tests that can
be used to test all autocorrelations simultaneously.

1. Box-Pierce:

Qm = n
mX
h=1

ȷ̂(h)2 ∼ ffl2
m−p−q

2. Ljung-Box: 4

Q̃m = n(n + 2)
mX
h=1

ȷ̂(h)2

n − h
∼ ffl2

m−p−q

Generally, if the model fits well there should be no significant patter in et .

9 Regression Continued

9.1 Autocorrelated errors
We discuss regression models following

yt =
rX
j=1

˛jzt;j + xt

where xt has covariance function ‚x(s; t). In ordinary least squares, the assumption is that xt is gaussian
white noise wt , constant variance and independent. Here xt becomes the error process. If it has non-constant
variance, weighted least squares can be used. The weighted least squared estimate is used when the co-
variance matrix has diagonal elements non-zero, all else zero. I.e. xt are independent but do not have equal

4This will be on the final - know how to calculate. Examples on Module 5 slides 58-59.
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variance.

Suppose the xt are not independent (i.e. covary in the sample),

y = Z˛ + x

where Z is the matrix of input variables. We diagonalize the covariance matrix to use weighted least squares
again. Letting Γ = {‚x(s; t)} be the covariance matrix then the transformation

Γ−
1
2 y = Γ−

1
2Z˛ + Γ−

1
2 x

gives a new equation
y∗ = Z∗˛ + ‹

which is in the form of the classical linear model. That is, the new linear model has independent errors, and
we can use the weighted least squares estimate.

ˆ̨ = (Z∗TZ∗)−1Z∗T y =⇒ Cov( ˆ̨) = ff2(Z∗TZ∗)−1

and in terms of the original model,
ˆ̨ = (ZTΓ−1Z)−1ZTΓ−1y

Regression in AR(p)

Consider the AR(p) case Φp(B)xt = wt and the regression model

yt = Z˛ + xt

Multiplying through by the characteristic polynomial, we have

Φp(B)yt| {z }
y∗t

=
rX
j=1

˛jΦp(B)zt;j| {z }
z∗t;j

+Φp(B)xt| {z }
wt

Which gives us the regression model. I.e. if p = 1 then z∗t;j = zt;j − ffizt−1;j . Then

S(ffi; ˛) =
nX
t=1

w2
t =

nX
t=1

0@Φp(B)yt −
rX
j=1

˛jΦp(B)zt;j

1A
with ffi; ˛ being coefficients of the polynomial, and parameters of linear model respectively.

Regression in AR(p; q)

If we have that
Φp(B)xt = Θq(B)wt

then setting Π(B) = Φp(B)=Θq(B) if Θq has appropriate roots, we get the same expression

wt = Π(B)xt

and minimize the same sum, with parameters for Θq

S(ffi; „; ˛) =
nX
t=1

w2
t =

nX
t=1

0@Π(B)yt −
rX
j=1

˛jΠ(B)zt;j

1A
Identification

We do not actually know the behaviour of xt before we run a regression.

1. Run an ordinary regression of yt ∼ zt;1; : : : ; zt;r

2. Identify arma models in the residuals x̂t = yt − Z ˆ̨

3. Run weighted least squares or MLE on regression model using previous discussion

4. Inspect ŵt for whiteness, iterate additional steps if needed
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9.2 Detecting Autocorrelation
The Durbin-Watson test statistic can be used to detect the presence of autocorrelation in a regression model
based on assumptions that the observations come from an AR(1) model. This test is used to check ffi = 0.

H0 : ffi = 0; xt = wt or Ha : ffi > 0; xt = ffixt−1 + wt

The Durbin-Watson statistic 5 for time ordered residuals e1; : : : ; en is given by

d =

Pn
t=2(et − et−1)

2Pn
t=1 e

2
t

• If d < dL;¸, reject H0

• If d > dU;¸, do not reject H0

• If dL;¸ < d < dU;¸, inconclusive

Testing the hypothesis

H0 : ffi = 0; xt = wt or Ha : ffi < 0; xt = ffixt−1 + wt

Can be done with

• If 4− d < dL;¸, reject H0

• If 4− d > dU;¸, do not reject H0

• If dL;¸ < 4− d < dU;¸, inconclusive

The above conditions for positive or negative correlation can be combined to test Ha : ffi ̸= 0.

5Will appear on final.
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9.3 Seasonal ARIMA Models
Definition 46. The seasonal ARIMA of order (p; d; q) × (P;D;Q)s where s is the number of seasons is
written

Φp(B)ΦP (B
s)(1− B)d(1− Bs)Dxt = ‹ +Θp(B)ΘQ(B

s)wt

The idea is we apply an additional polynomial in Bs in order to capture a seasonal component in the data at
lag s. We assume ΦP ;ΘQ have no common roots. (P;D;Q) are the order of the seasonal autoregressive,
seasonal differencing , seasonal moving average models respectively. (p; d; q) are called the non-seasonal
orders. We write

∇D
s = (1− Bs)D

for simplicity. The pure seasonal autoregressive model is denoted

ΦP (B
s)xt = Θq(B

s)wt

Similar causality and invertibility conditions hold for these polynomials.

Example 23. 6 For the first order seasonal s = 12 moving average model xt = wt +Θwt−12 we have

‚(0) = (1 + Θ2)ff2w ; ‚(±12) = Θff2w ; 0 otherwise

Example 24. 7 For the first order seasonal s = 12 moving autoregressive model xt = Φxt−12 + wt we have

‚(0) = ff2w=(1− Φ2); ‚(±12h) = Φhff2w=(1− Φ2); 0 otherwise

10 Additional Topics

Mainly extra8 topics, spectral analysis, fractional differencing and long memory, volatility.

10.1 Spectral Analysis
Many time series show complex periodic behaviour. Spectral analysis explains the underlying periodicities,
where we decompose a stationary series into sine and cosine waves with uncorrelated coefficients.

Definition 47. The spectral density is a frequency domain representation of a time series that is directly
related to the autocovariance time domain representation: discrete Fourier transform.

Frequency domain approach considers regression on sinusoids, whereas time domain considers regression on
past values.

• Regression: xt = ffi1xt−1 + ffi2xt−2 + · · ·

• Spectral: xt =
P

!∈N A!;1 cos(2ı!t) + A!;2 sin(2ı!t)

Consider the periodic process

xt = A cos(2ı!t + ffi) for t = 0;±1;±2; · · ·

where T is the length of one cycle, ! = 1=T is the frequency, A is the amplitude, ffi is the phase. We may
write

xt = ˛1 cos(2ı!t) + ˛2 sin(2ı!t)

where ˛1 = A cos(ffi); ˛2 = − sin(ffi). Therefore A =
p
˛2
1 + ˛2

2 and ffi = tan−1(−˛2=˛1).

Proposition 6. A; ffi are independent random variables where

A ∼ ffl2
2; ffi ∼ U(−ı; ı) ⇐⇒ ˛1; ˛2 ∼ N(0; 1)

6This will appear on the final as a MCQ.
7This will appear on the final as a MCQ.
8There will only by 2 MCQ on exam based on this topic.
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The autocovariance of uncorrelated sinusoids is the sum of their autocovariances. Therefore for

xt =
kX
j=1

Aj cos(2ı!j t) + Bj sin(2ı!j t)

we have ‚(h) =
Pk

j=1 ff
2
j cos(2ı!jh).

Definition 48. For xt with autocovariance ‚ satisfying
P∞

h=−∞ |‚(h)| <∞ we define its spectral density 9

as

f (!) =
∞X

h=−∞
‚(h)e−2ıi!h

and the normalized spectral density as

f ∗(!) =
∞X

h=−∞
ȷ(h)e−2ıi!h

Note that f (!) > 0, f is periodic, f has period 1: we may restrict the domain of f to − 1
2 ≤ ! ≤ 1

2 . Inverting
the fourier transform gives the autocovariance function

‚(h) =

ˆ 1
2

− 1
2

e2ıi!hf (!)d!

We may split the above summation definition of f as 10

f (!) = ‚(0) +
∞X
h=1

‚(h)e−2ıi!h +
−1X

h=−∞
‚(h)e−2ıi!h

= ‚(0) + 2
∞X
h=1

‚(h) cos(2ı!h)

The corresponding normalized spectrum is

f ∗(!) = ȷ(0) + 2
∞X
h=1

ȷ(h) cos(2ı!h)

Example 25. We compute the spectral density of an AR(1) process.

f (!) = ‚(0) +
∞X
h=1

‚(h)e−2ıi!h +
∞X
h=1

‚(h)e2ıi!h

=
ff2

1− ffi2

 
‚(0) +

∞X
h=1

(ffie2ıi!)h +
∞X
h=1

(ffie−2ıi!)h

!

=
ff2

1− ffi2

„
1− ffie−2ıi!ffie2ıi!

(1− ffie−2ıi!)(1− ffie2ıi!)

«
=

ff2

1− 2ffi cos(2ı!) + ffi2

10.2 Long Memory and Fractional Differencing
The ARMA(p; q) is often called a short memory process since the coefficients in Wold representation xt =P
 jwt−j decay exponentially. The result implies ȷ(h) → 0 exponentially fast as h → ∞.

When the ACF of xt decays slowly, we may difference the series until it seems stationary

∇xt = (1− B)xt

9Will show up on exam
10Will show up on exam, might be asked to show spectral density of MA process
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However, this may yield an over-differencing of the model by too strongly modifying it. Such a process is a
long memory time series. The basic long memory series is a special case of the autoregressive fractionally
integrated model ARIFMA(0; d; 0) given by

(1− B)dxt = wt

where 0 < d < 0:5. When d is not an integer, the d-th difference

∇dxt = (1− B)dxt =

„
1− dB +

d(d − 1)

2!
B2 − d(d − 1)(d − 2)

3!
B3 + · · ·

«
xt

Definition 49. The auto-regressive fractionally integrated ARFIMA(p; d; q) is 
1−

pX
i=1

ffiiB
i

!
(1− B)dxt =

 
1 +

qX
i=1

„iB
i

!
wt

where d is the fractional difference, takes a value between 0; 1 possibly up to 2+ in more extreme cases.
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