

What is Coupling?

An empirical phenomenon where transformer blocks adopt a common basis and perform similar computations in coordination across depth and tokens.

Mathematical Formulation

• Token embedding: $x_i^l \in \mathbb{R}^d$ at layer l.

$$X^{l+1} = F^{l+1}_{\rm block}(X^l) = X^l + f^{l+1}(X^l).$$

• **Block Jacobians:** The linearization at layer *l*.

$$J_{t_1t_2}^l = \frac{\partial}{\partial x_{t_1}^{l-1}} \left(f^l(X^{l-1}) \right)_{t_2} \in \mathbb{R}^{d \times d}.$$

• **Coupling:** Given Jacobians J_1, J_2 , we compute their singular value decompositions $J_1 = U_1 S_1 V_1^T \qquad J_2 = U_2 S_2 V_2^T,$

and quantify **coupling** of their top-K singular vectors using

$$m_{K}(J_{1}, J_{2}) = \frac{||U_{2,K}^{T}J_{1}V_{2,K} - S_{1,K}||_{F}}{||s_{1,K}||_{p}} = \frac{||U_{2,K}^{T}U_{1}S_{1}V_{1}^{T}V_{2,K}||_{F}}{||s_{1,K}||_{p}}$$

Measures how strongly the top-K singular vectors are aligned (diagonalizing J_1 with the top-K singular vectors of J_2).

Figure 1. Measuring coupling through multiple token interactions in the transformer blocks.

Emergence of Coupling with Training

Figure 2. Increased coupling of transformer blocks in Pythia 12B during training.

TRANSFORMER BLOCK COUPLING & its Correlation with Generalization in LLMs

Murdock Aubry*, Haoming Meng*, Anton Sugolov*, Vardan Papyan

Correlation with Generalization

$|K - S_{1,K}||_F$

Depth-wise coupling

For layers $1 \leq l_1, l_2 \leq L$, we plot A^{l_1, l_2} , observing **coupling across depth** of block Jacobians J^{l_1}, J^{l_2} operating on a fixed token embedding $(t_1 = t_2)$.

								\langle
			\backslash					
				\backslash				
					\searrow			
						\backslash		
							\searrow	
(a) Untrained								

Figure 4. Llama-3-8B, coupling of the last token across layers 9 to 16.

Token-wise coupling

Figure 5. Llama-3-8B, context coupling with fixed output token across pairs of prompt input tokens, fixing two random layers.

0.6 0.5 -0.40.3 -0 60 (a) Correlation with Generalization

Figure 6. Coupling in ViTs with varied stochastic depth settings.

Properties of Embedding Trajectories

Figure 7. Llama-3-70B, PCA of token embedding trajectories with LLM layer depth.

Coupling in Vision Transformers

Figure 8. Embedding trajectory metrics at initialization and after training.